Discrete systems behave as nonlocal structural elements: Bending, buckling and vibration analysis

European Journal of Mechanics - A/Solids - Tập 44 - Trang 125-135 - 2014
Noël Challamel1, C. M. Wang2, Isaac Elishakoff3
1Université Européenne de Bretagne, University of South Brittany UBS, UBS – LIMATB, Centre de Recherche, Rue de Saint Maudé, BP92116, 56321 Lorient Cedex, France
2Engineering Science Programme and Department of Civil and Environmental Engineering, National University of Singapore, Kent Ridge, Singapore 119260, Singapore
3Department of Ocean and Mechanical Engineering, Florida Atlantic University, Boca Raton FL 33431-0991, USA

Tóm tắt

Từ khóa


Tài liệu tham khảo

Andrianov, 2006, On an elastic dissipation model as continuous approximation for discrete media, Math. Probl. Eng., 27373, 1, 10.1155/MPE/2006/27373

Andrianov, 2010, Improved continuous models for discrete media, Math. Probl. Eng., 986242, 1, 10.1155/2010/986242

Challamel, 2008, The small length scale effect for a non-local cantilever beam: a paradox solved, Nanotechnology, 19, 345703, 10.1088/0957-4484/19/34/345703

Challamel, 2009, A dispersive wave equation using non-local elasticity, C. R. Mécanique, 337, 591, 10.1016/j.crme.2009.06.028

Challamel, 2013, Variational formulation of gradient or/and nonlocal higher-order shear elasticity beams, Compos. Struct., 105, 351, 10.1016/j.compstruct.2013.05.026

Challamel, 2013, Analytical length scale calibration of nonlocal continuum from a microstructured buckling model, Z. Angew. Math. Mech., 10.1002/zamm.201200130

Challamel, 2013, Nonlocal equivalent continua for buckling and vibration analyses of microstructured beams, J. Nanomech. Micromech., ASCE, 10.1061/(ASCE)NM.2153-5477.0000062

Charlotte, 2012, Lattice dynamics from a continuum viewpoint, J. Mech. Phys. Sol., 60, 1508, 10.1016/j.jmps.2012.03.004

Domokos, 1993, Qualitative convergence in the discrete approximation of the Euler problem, Mech. Struct. Mach., 21, 529, 10.1080/08905459308905200

Duan, 2013, Development of analytical vibration solutions for microstructured beam model to calibrate length scale coefficient in nonlocal Timoshenko beams, J. Appl. Phys., 114, 1

Elaydi, 2005

Elishakoff, 1998

Elishakoff, 2012

El Naschie, 1990

Eringen, 1983, On differential equations of nonlocal elasticity and solutions of screw dislocation and surface waves, J. Appl. Phys., 54, 4703, 10.1063/1.332803

Galef, 1968, Bending frequencies of compressed beams, J. Acoust. Soc. America, 44, 643, 10.1121/1.1911144

Hencky H., Habilitationschrift, D. Sc. Thesis, Technical University of Darmstadt, Germany 1920.

Kunin, 1982

Lazar, 2006, On a theory of nonlocal elasticity of bi-Helmholtz type and some applications, Int. J. Sol. Struct., 43, 1404, 10.1016/j.ijsolstr.2005.04.027

Massonnet, 1940, Les relations entre les modes normaux de vibration et la stabilité des systèmes élastiques, Bull. du CERES Liège, 183

Milton, 2007, On modifications of Newton’s second law and linear continuum elastodynamics, Proc. R. Soc. A., 463, 855, 10.1098/rspa.2006.1795

Mindlin, 1964, Micro-structure in linear elasticity, Arch. Rat. Mech. Anal., 16, 51, 10.1007/BF00248490

Noor, 1988, Continuum modeling for repetitive lattice structures, Appl. Mech. Rev., 41, 285, 10.1115/1.3151907

Ostoja-Starzewski, 2002, Lattice models in micromechanics, Appl. Mech. Rev., 55, 35, 10.1115/1.1432990

Peddieson, 2003, Application of nonlocal continuum models to nanotechnology, Int. J. Eng. Sci., 41, 305, 10.1016/S0020-7225(02)00210-0

Polyzos, 2012, Derivation of Mindlin's first and second strain gradient elastic theory via simple lattice and continuum models, Int. J. Sol. Struct., 49, 470, 10.1016/j.ijsolstr.2011.10.021

Reddy, 2008, Nonlocal continuum theories of beams for the analysis of carbon nanotubes, J. Appl. Phys., 103

Salvadori, 1951, Numerical computation of buckling loads by finite differences, Trans. ASCE, 116, 590

Santoro, 2006, Accuracy of the finite difference method in stochastic setting, J. Sound Vibrat., 291, 275, 10.1016/j.jsv.2005.06.038

Seide, 1975, Accuracy of some numerical methods for column buckling, J. Eng. Mech., 101, 549

Silverman, 1951, Discussion on the paper of “Salvadori M.G., Numerical computation of buckling loads by finite differences, Trans. ASCE, 116, 590

Tarnai, 1995, The Southwell and the Dunkerley theorems, 141

Wang, 2006, Buckling analysis of micro- and nano-rods/tubes based on nonlocal Timoshenko beam theory, J. Phys. D: Appl. Phys., 39, 3904, 10.1088/0022-3727/39/17/029

Wang, 2008, Beam bending solutions based on nonlocal Timoshenko beam theory, J. Eng. Mech., 134, 475, 10.1061/(ASCE)0733-9399(2008)134:6(475)

Wang, 2009, Postbuckling of nano rods/tubes based on nonlocal beam theory, Int. J. Appl. Mech., 1, 259, 10.1142/S1758825109000150

Wang, 2013, Calibration of Eringen’s small length scale coefficient for initially stressed vibrating nonlocal Euler beams based on microstructured beam model, J. Phys. D: Appl. Phys., 46, 345501, 10.1088/0022-3727/46/34/345501

Wang, 1951, Discussion on the paper of “Salvadori M.G., Numerical computation of buckling loads by finite differences”, Trans. ASCE, 116, 629

Wang, 1953

Wattis, 2000, Quasi-continuum approximations to lattice equations arising from the discrete non-linear telegraph equation, J. Phys. A: Math. Gen., 33, 5925, 10.1088/0305-4470/33/33/311

Xu, 2013, Stability analysis of nonlocal elastic columns with initial imperfection, Math. Probl. Eng., 341232

Zhang, 2010, Bending, buckling and vibration of hybrid nonlocal beams, J. Eng. Mech., 136, 562, 10.1061/(ASCE)EM.1943-7889.0000107

Zhang, 2013, Eringen's small length scale coefficient for buckling of nonlocal Timoshenko beam based on a microstructured beam model, J. Appl. Phys., 114, 1