Discrete energy spectrum of nonlinear spin ensembles in the ferrimagnet K0.4[Cr(CN)6][Mn(R/S)-pn](R/S)-pnH0.6

Pleiades Publishing Ltd - Tập 59 - Trang 70-75 - 2017
A. D. Talantsev1, M. V. Kirman1, R. B. Morgunov1
1Institute of Problems of Chemical Physics, Russian Academy of Sciences, Chernogolovka, Moscow oblast, Russia

Tóm tắt

Series of spontaneous magnetization jumps have been observed on the background of a continuous relaxation of the magnetic moment of a molecular ferrimagnet in a constant magnetic field. A statistical analysis of the set of data has demonstrated the presence of at least two modes in the distribution of magnetization reversal jumps over their amplitude. It has been found that the number of modes in the distribution depends on the magnetic field and temperature and characterizes a discrete energy spectrum of nonlinear spin ensembles formed at low temperatures. The continuous component of the magnetic relaxation corresponds to the motion of domain-wall arrays in the temperature range from 20 to 50 K and to relaxation processes in the spin-soliton lattice at temperatures ranging from 2 to 10 K.

Tài liệu tham khảo

J. Kishine, K. Inoue, and Y. Yoshida, Prog. Theor. Phys. Suppl. 159, 82 (2005). R. B. Morgunov, M. V. Kirman, K. Inoue, Y. Tanimoto, J. Kishine, A. S. Ovchinnikov, and O. Kazakova, Phys. Rev. B: Condens. Matter 77 (18), 184419 (2008). R. B. Morgunov, F. B. Mushenok, and O. Kazakova, Phys. Rev. B: Condens. Matter 82 (13), 134439 (2010). F. Mushenok, O. Koplak, and R. Morgunov, Eur. Phys. J. B 84, 219 (2011). A. B. Butenko, A. A. Leonov, U. K. Rößler, and A. N. Bogdanov, Phys. Rev. B: Condens. Matter 82 (5), 052403 (2010). A. Karhu, U. K. Rößler, A. N. Bogdanov, S. Kahwaji, B. J. Kirby, H. Fritzsche, M. D. Robertson, C. F. Majkrzak, and T. L. Monchesky, Phys. Rev. B: Condens. Matter 85 (9), 094429 (2012). M. N. Wilson, E. A. Karhu, D. P. Lake, A. S. Quigley, S. Meynell, A. N. Bogdanov, H. Fritzsche, U. K. Rößler, and T. L. Monchesky, Phys. Rev. B: Condens. Matter 88 (21), 214420 (2013). V. M. Rudyak, Sov. Phys.—Usp. 13 (4), 461 (1970). A. S. Boyarchenkov, I. G. Bostrem, and A. S. Ovchinnikov, Phys. Rev. B: Condens. Matter 76 (22), 224410 (2007). M. V. Kirman, A. D. Talantsev, O. V. Koplak, and R. B. Morgunov, JETP Lett. 101 (6), 398 (2015). R. B. Morgunov, M. V. Kirman, and A. D. Talantsev, Phys. Solid State 57 (8), 1519 (2015). J. Kishine, I. G. Bostrem, A. S. Ovchinnikov, and Vl. E. Sinitsyn, Phys. Rev. B: Condens. Matter 89 (1), 014419 (2014). K. Tsuruta, M. Mito, Y. Kousaka, J. Akimitsu, J. Kishine, Y. Togawa, H. Ohsumi, and K. Inoue, J. Phys. Soc. Jpn. 85, 013707 (2016). K. Inoue, H. Imai, P. S. Ghalsasi, K. Kikuchi, M. Ohba, H. Okawa, and J. V. Yakhmi, Angew. Chem., Int. Ed. 40, 4242 (2001). M. Sendek, K. Csach, V. Kavecanský, M. Lukácová, M. Maryško, Z. Mitróová, and A. Zentko, Phys. Status Solidi A 196, 225 (2003). D. K. Lottis, E. D. Dahlberg, J. A. Christner, J. I. Lee, R. L. Peterson, and R. M. White, J. Appl. Phys. 63, 2920 (1988). D. Givord, Q. Lu, M. F. Rossignol, P. Tenaud, and T. Viadieu, J. Magn. Magn. Mater. 83, 183 (1990). C. K. Mylvaganam and P. Gaunt, Philos. Mag. B 44, 581 (1981). P. Gaunt, J. Appl. Phys. 59, 4129 (1986).