Discrete analogue of generalized Hardy spaces and multiplication operators on homogenous trees

Perumal Muthukumar1, Saminathan Ponnusamy1
1Indian Statistical Institute (ISI), Chennai Centre, SETS (Society for Electronic Transactions and security), MGR Knowledge City, CIT Campus, Taramani, Chennai, 600 113, India

Tóm tắt

Từ khóa


Tài liệu tham khảo

Aleman, A., Duren, P.L., Martin, M.J., Vukotić, D.: Multiplicative isometries and isometric zero-divisors. Canad. J. Math. 62, 961–974 (2010)

Allen, R.F., Colonna, F., Easley, G.R.: Multiplication operators between Lipschitz-type spaces on a tree. Int. J. Math. Math. Sci. Art. ID 472495. 36 (2011)

Allen, R.F., Colonna, F., Easley, G.R.: Multiplication operators on the iterated logarithmic Lipschitz spaces of a tree. Mediterr. J. Math. 9, 575–600 (2012)

Allen, R.F., Colonna, F., Easley, G.R.: Multiplication operators on the weighted Lipschitz space of a tree. J. Oper. Theor. 69, 209–231 (2013)

Allen, R.F., Colonna, F., Easley, G.R.: Composition operators on the Lipschitz space of a tree. Mediterr. J. Math. 11, 97–108 (2014)

Biase, F.D., Picardello, M.A.: The Green formula and $$H^p$$ H p spaces on trees. Math. Z. 218, 253–272 (1995)

Campbell, D.M., Leach, R.J.: A survey of $$H^p$$ H p multipliers as related to classical function theory. Complex Variab. Theor. Appl. 3, 85–111 (1984)

Chen, Sh, Ponnusamy, S., Rasila, A.: On characterizations of Bloch-type, Hardy-type and Lipschitz-type spaces. Math. Z. 279, 163–183 (2015)

Clunie, J.G., Anderson, J.M., Pommerenke, Ch.: On Bloch functions and normal functions. J. Reine Angew. Math. 270, 12–37 (1974)

Colonna, F., Easley, G.R.: Multiplication operators on the Lipschitz space of a tree. Integr. Equ. Oper. Theory 68, 391–411 (2010)

Colonna, F., Easley, G.R.: Multiplication operators between the Lipschitz space and the space of bounded functions on a tree. Mediterr. J. Math. 9, 423–438 (2012)

Conway, J.B.: A course in functional analysis, 2nd edn. Springer, New York (1990)

Diestel, R.: Graph Theory, 4th edn. Springer, New York (2010)

Duren, P.L., Romberg, B.W., Shields, A.L.: Linear functionals on $$H^p$$ H p spaces with $$0<p<1$$ 0 < p < 1 . J. Reine Angew. Math. 238, 32–60 (1969)

Duren, P.L.: Theory of $$H^p$$ H p Spaces. Academic Press, New York and London (1970)

El-Fallah, O., Kellay, K., Mashreghi, J., Ransford, T.: A primer on the Dirichlet space. Cambridge University Press, Cambridge (2014)

Hedenmalm, H., Korenblum, B., Zhu, K.: Theory of Bergman Spaces. Springer-Verlag, New York (2000)

Korányi, A., Picardello, M.A., Taibleson, M.H.: Hardy spaces on non-homogeneous trees. Symp. Math. 29, 205–265 (1987)

Manhas, J.S.: Composition operators and multiplication operators on weighted spaces of analytic functions. Int. J. Math. Math. Sci. Art. ID 92070. 21 (2007)

Pavlović, M.: Function Classes on the Unit Disc. An introduction. De Gruyter Studies in Mathematics, pp. 52. De Gruyter, Berlin (2014)

Rudin, W.: Functional analysis, $$2$$ 2 nd edn.In: International Series in Pure and Applied Mathematics. McGraw-Hill, Inc., New York (1991)

Shapiro, J.H.: Composition Operators and Classical Function Theory. Springer, New York (1993)

Vukotić, D.: Analytic Toeplitz operators on the Hardy space $$H^p$$ H p : a survey. Bull. Belg. Math. Soc. 10, 101–113 (2003)

Zhu, K.: Operator Theory in Function Spaces. Marcel Dekker, New York (1990)