Discrete Morse Functions and Watersheds
Tóm tắt
Từ khóa
Tài liệu tham khảo
Digabel, H., Lantuéjoul, C.: Iterative algorithms. In: Proceedings of the 2nd European Symposium Quantitative Analysis of Microstructures in Material Science, Biology and Medicine, vol. 19, p. 8. Riederer (1978)
Vincent, L., Soille, P.: Watersheds in digital spaces: an efficient algorithm based on immersion simulations. IEEE Trans. Pattern Anal. Mach. Intell. 13(6), 583–598 (1991)
Arbelaez, P., Maire, M., Fowlkes, C., Malik, J.: Contour detection and hierarchical image segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 33(5), 898–916 (2010)
Couprie, M., Bertrand, G.: Topological gray-scale watershed transformation. In: Vision Geometry VI, vol. 3168, pp. 136–146. SPIE (1997)
Cousty, J., Bertrand, G., Najman, L., Couprie, M.: Watershed cuts: minimum spanning forests and the drop of water principle. IEEE Trans. Pattern Anal. Mach. Intell. 31(8), 1362–1374 (2009)
Cousty, J., Bertrand, G., Couprie, M., Najman, L.: Collapses and watersheds in pseudomanifolds. In: International Workshop on Combinatorial Image Analysis. Lecture Notes in Computer Science, vol. 5852, pp. 397–410. Springer (2009)
Cousty, J., Bertrand, G., Couprie, M., Najman, L.: Collapses and watersheds in pseudomanifolds of arbitrary dimension. J. Math. Imaging Vis. 50(3), 261–285 (2014)
Forman, R.: A discrete Morse theory for cell complexes. In: Yau, S.-T. (ed.) Geometry, Topology for Raoul Bott. International Press, Somerville (1995)
Boutry, N., Géraud, T., Najman, L.: An equivalence relation between morphological dynamics and persistent homology in 1D. In: International Symposium on Mathematical Morphology. Lecture Notes in Computer Science Series, vol. 11564, pp. 57–68. Springer (2019)
Boutry, N., Géraud, T., Najman, L.: An equivalence relation between morphological dynamics and persistent homology in $$n$$-D. In: International Conference on Discrete Geometry and Mathematical Morphology, pp. 525–537. Springer (2021)
Boutry, N., Najman, L., Géraud, T.: Some equivalence relation between persistent homology and morphological dynamics. J. Math. Imaging Vis. 64, 807–824 (2022). https://doi.org/10.1007/s10851-022-01104-z
Grimaud, M.: New measure of contrast: the dynamics. In: Image Algebra and Morphological Image Processing III, vol. 1769, pp. 292–306. International Society for Optics and Photonics (1992)
Tierny, J.: Introduction to Topological Data Analysis. Technical report, Sorbonne University, LIP6, APR team, France. https://hal.archives-ouvertes.fr/cel-01581941 (2017)
Munch, E.: A user’s guide to topological data analysis. J. Learn. Anal. 4(2), 47–61 (2017)
Boutry, N., Bertrand, G., Najman, L.: Gradient vector fields of discrete Morse functions and watershed-cuts. In: Baudrier, É., Naegel, B., Krähenbühl, A., Tajine, M. (eds.) Discrete Geometry and Mathematical Morphology, pp. 35–47. Springer, Cham (2022)
De Floriani, L., Iuricich, F., Magillo, P., Simari, P.: Discrete Morse versus watershed decompositions of tessellated manifolds. In: International Conference on Image Analysis and Processing. Lecture Notes in Computer Science, vol. 8157, pp. 339–348. Springer (2013)
Delgado-Friedrichs, O., Robins, V., Sheppard, A.: Skeletonization and partitioning of digital images using Discrete Morse Theory. IEEE Trans. Pattern Anal. Mach. Intell. 37(3), 654–666 (2014)
De Floriani, L., Fugacci, U., Iuricich, F., Magillo, P.: Morse complexes for shape segmentation and homological analysis: discrete models and algorithms. Comput. Gr. Forum 34(2), 761–785 (2015)
Alexandroff, P.: Diskrete raüme. Matematicheskiĭ Sbornik 2(3), 501–519 (1937)
Barmak, J.A., Minian, E.G.: Simple homotopy types and finite spaces. Adv. Math. 218(1), 87–104 (2008)
Whitehead, J.H.C.: Simplicial spaces, nuclei and m-groups. Proc. Lond. Math. Soc. 2(1), 243–327 (1939)
Bagchi, B., Datta, B.: Lower bound theorem for normal pseudomanifolds. Expo. Math. 26(4), 327–351 (2008)
Basak, B., Swartz, E.: Three-dimensional normal pseudomanifolds with relatively few edges. Adv. Math. 365, 107035 (2020)
Datta, B., Nilakantan, N.: Three-dimensional pseudomanifolds on eight vertices. Int. J. Math. Sci. (2008)
Couprie, M., Najman, L., Bertrand, G.: Algorithms for the topological watershed. In: Andres, E., Damiand, G., Lienhardt, P. (eds.) Discrete Geometry for Computer Imagery, pp. 172–182. Springer, Berlin (2005)
Cormen, T.H., Leiserson, C.E., Rivest, R.L.: Introduction to Algorithms. 23rd printing. The MIT Press, Cambrideg (1999)
Čomić, L., De Floriani, L., Iuricich, F., Magillo, P.: Computing a discrete Morse gradient from a watershed decomposition. Comput. Gr. 58, 43–52 (2016)
Najman, L., Schmitt, M.: Geodesic saliency of watershed contours and hierarchical segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 18(12), 1163–1173 (1996)
Najman, L.: On the equivalence between hierarchical segmentations and ultrametric watersheds. J. Math. Imaging Vis. 40(3), 231–247 (2011)
Cousty, J., Najman, L., Kenmochi, Y., Guimarães, S.: Hierarchical segmentations with graphs: quasi-flat zones, minimum spanning trees, and saliency maps. J. Math. Imaging Vis. 60(4), 479–502 (2018)
Perret, B., Chierchia, G., Cousty, J., Guimarães, S.J.F., Kenmochi, Y., Najman, L.: Higra: hierarchical graph analysis. SoftwareX 10, 100335 (2019)
Challa, A., Danda, S., Sagar, B.D., Najman, L.: Watersheds for semi-supervised classification. IEEE Signal Process. Lett. 26(5), 720–724 (2019)
Bertrand, G., Couprie, M.: Powerful parallel and symmetric 3d thinning schemes based on critical kernels. J. Math. Imaging Vis. 48(1), 134–148 (2014)
Bertrand, G., Everat, J.-C., Couprie, M.: Image segmentation through operators based on topology. J. Electron. Imaging 6(4), 395–405 (1997)