Nội dung được dịch bởi AI, chỉ mang tính chất tham khảo
Khoảng Lặp Rời Rạc của Các Phép Quay Bổ Sung. I: Bình Phương Trung Bình
Tóm tắt
Trong ghi chú này, chúng tôi chứng minh một công thức tiệm cận cho bình phương trung bình của cái gọi là hàm zeta theo chu kỳ liên quan đến tham số. Điều này có thể được so sánh với các công thức tương tự cho các hàm L Dirichlet tới các ký tự lớp dư (nhân) do Paley và những người khác. Hàm zeta theo chu kỳ là biến thể của hàm zeta Riemann với một ký tự cộng.
Từ khóa
#hàm zeta #bình phương trung bình #hàm L Dirichlet #ký tự lớp dư #phép quay bổ sungTài liệu tham khảo
T.M. Apostol, Introduction to Analytic Number Theory, Springer, New York, Heidelberg, Berlin, 1955.
B. Bagchi, The Statistical Behaviour and Universality Properties of the Riemann Zeta-Function and Other Allied Dirichlet Series, PhD dissertation, Indian Statistical Institute, Calcutta, India, 1981.
R. Balasubramanian, A note on Hurwitz’s zeta-function, Ann. Acad. Sci. Fenn., Ser. A I, Math., 4:41–44, 1979.
K.A. Broughan, Vanishing of the integral of the Hurwitz zeta function, Bull. Aust. Math. Soc., 65:121–127, 2002.
K.M. Eminyan, χ-universality of the Dirichlet L-function, Mat. Zametki, 47(6):132–137, 1990 (in Russian).
R. Garunkštis, Approximation of the Lerch zeta-function, Lith. Math. J., 44(2):140–144, 2004.
G.H. Hardy and J.E. Littlewood, Contributions to the theory of the Riemann zeta-function and the theory of the distribution of primes, Acta Math., 41:119–196, 1917.
G.H. Hardy and J.E. Littlewood, The approximate functional equation in the theory of the zeta-function, with applications to the divisor problems of Dirichlet and Piltz, Proc. Lond. Math. Soc. (2), 21:39–74, 1923.
D.R. Heath-Brown, The fourth power mean of Dirichlet’s L-functions, Analysis, 1:25–32, 1981.
A.E. Ingham, Mean-value theorems in the theory of the Riemann zeta-function, Proc. Lond. Math. Soc. (2), 27:273–300, 1927.
A. Kačėnas and A. Laurinčikas, On the periodic zeta-function, Lith. Math. J., 41(2):168–177, 2001.
M. Katsurada and K. Matsumoto, Discrete mean values of Hurwitz zeta-functions, Proc. Japan Acad., Ser. A, 69: 164–169, 1993.
E. Landau, Über das Nichtverschwinden der Dirichletschen Reihen, welche komplexen Charakteren entsprechen, Math. Ann., 70:69–78, 1911.
A. Laurinˇcikas and R. Garunkštis, The Lerch Zeta-Function, Kluwer, Dordrecht, 2002.
J.E. Littlewood, On the class-number of the corpus P(−k), Proc. Lond. Math. Soc. (2), 27:358–372, 1928.
K. Matsumoto, Recent developments in the mean square theory of the Riemann zeta and other zeta-functions, in R.P. Bambah, V.C. Dumir, and R.J. Hans-Gill (Eds.), Number Theory, Trends Math., Birkhäuser, Basel, 2000, pp. 241–286.
N. Oswald and J. Steuding, Aspects of zeta-function theory in the mathematicalworks of Adolf Hurwitz, in J. Sander, J. Steuding, and R. Steuding (Eds.), From Arithmetic to Zeta-Functions. Number Theory in Memory of Wolfgang Schwarz, Springer, Cham, 2016, pp. 309–351.
R.E.A.C. Paley, On the k-analogues of some theorems in the theory of the Riemann ζ-function, Proc. Lond. Math. Soc. (2), 32:273–311, 1931.
K. Soundararajan, The fourth moment of Dirichlet L-functions, inW. Duke and Y. Tschinkel (Eds.), Analytic Number Theory. A Tribute to Gauss and Dirichlet, Clay Math. Proc., Vol. 7, AMS, Providence, RI, 2007, pp. 239–246.
E.C. Titchmarsh, The Theory of the Riemann Zeta-Function, 2nd ed., Oxford Univ. Press, Oxford, 1986.
Z. Wenpeng, On the mean square value of Dirichlet’s L-functions, Compos. Math., 84:59–69, 1992.
