Discrete Grüss type inequality on fractional calculus
Tóm tắt
We give a discrete Grüss type inequality on fractional calculus.
Tài liệu tham khảo
Grüss, G: Über das Maximum des absoluten Betrages von \(\frac{1}{b-a}\int_{a}^{b}f(x)g(x)\,dx-\frac{1}{(b-a)^{2}}\int_{a}^{b}f(x)\,dx\int_{a}^{b}g(x)\,dx\). Math. Z. 39, 215-226 (1935)
Bohner, M, Peterson, A: Advances in Dynamic Equations on Time Scales. Birkhäuser, Boston (2003)
Cerone, P, Dragomir, SS: A refinement of the Grüss inequality and applications. Tamkang J. Math. 38, 37-49 (2007)
Dragomir, SS: A generalization of Grüss’s inequality in inner product spaces and applications. J. Math. Anal. Appl. 237, 74-82 (1999)
Dragomir, SS: A Grüss type discrete inequality in inner product spaces and applications. J. Math. Anal. Appl. 250, 494-511 (2000)
Liu, Z: Notes on a Grüss type inequality and its applications. Vietnam J. Math. 35, 121-127 (2007)
Perić, I, Rajić, R: Grüss inequality for completely bounded maps. Linear Algebra Appl. 390, 287-292 (2004)
Pečarić, JE, Tepeš, B: On the Grüss type inequalities of Dragomir and Fedotov. J. Inequal. Pure Appl. Math. 4(5), 91 (2003)
Pečarić, JE, Tepeš, B: A note on Grüss type inequality in terms of Δ-seminorms. Pril. - Maked. Akad. Nauk. Umet., Odd. Mat.-Teh. Nauki 23/24 (2002/2003); 29-35 (2004)
Anastassiou, GA: Nabla Discrete fractional calculus and inequalities. arXiv:0911.3374v1 [math.CA] (2009)
Anastassiou, GA: Multivariate Fink type identity and multivariate Ostrowski, comparison of means and Grüss type inequalities. Math. Comput. Model. 46, 351-374 (2007)
Bohner, M, Matthews, T: The Grüss inequality on time scales. Commun. Math. Anal. 3, 1-8 (2007) (electronic)
Graham, RL, Knuth, DE, Patashnik, O: Concrete Mathematics: A Foundation for Computer Science, 2nd edn. Addison-Wesley, Reading (1994)
Mercer, AM: An improvement of the Grüss inequality. JIPAM. J. Inequal. Pure Appl. Math. 6(4), 93 (2005)
Mitrinović, DS: Analytic Inequalities. Springer, New York (1970)
Mitrinović, DS, Pečarić, JE, Fink, AM: Classical and New Inequalities in Analysis. Kluwer Academic, Dordrecht (1993)
Pachpatte, BG: Some new Ostrowski and Grüss type inequalities. Tamkang J. Math. 38(2), 11-120 (2007)
Boros, G, Moll, V: Irresistible Integrals: Symbols, Analysis and Experiments in the Evaluation of Integrals. Cambridge University Press, Cambridge (2004)
Diaz, JB, Osler, TJ: Differences of fractional order. Math. Comput. 28, 185-202 (1974)
Gray, HL, Zhang, NF: On a new definition of fractional difference. Math. Comput. 50, 513-529 (1988)
Atıcı, FM, Eloe, PW: Initial value problems in discrete fractional calculus. Proc. Am. Math. Soc. 137(3), 981-989 (2009)
Atıcı, FM, Şengül, S: Modeling with fractional difference equations. J. Math. Anal. Appl. 369(1), 1-9 (2010)
Goodrich, CS: Continuity of solutions to discrete fractional initial value problems. Comput. Math. Appl. 59(11), 3489-3499 (2010)
Atıcı, FM, Eloe, PW: Gronwall’s inequality on discrete fractional calculus. Comput. Math. Appl. 64(10), 3193-3200 (2012)
Anastassiou, GA: Nabla discrete fractional calculus and nabla inequalities. Math. Comput. Model. 51(5-6), 562-571 (2010)
Güvenilir, AF, Kaymakçalan, B, Peterson, AC, Taş, K: Nabla discrete fractional Grüss type inequality. J. Inequal. Appl. 2014, 86 (2014). doi:10.1186/1029-242X-2014-86
Ferreira, RAC: A discrete fractional Gronwall inequality. Proc. Am. Math. Soc. 140(5), 1605-1612 (2012)
Atıcı, F, Eloe, P: A transform method in discrete fractional calculus. Int. J. Difference Equ. 2, 165-176 (2007)