Discrete Element Method of the Dynamic Behavior of Flaky Particles Using the Rigid Plate Model
Tóm tắt
The discrete element method (DEM) can be used to simulate the behavior of spherical particles. The spherical particles are regarded as rigid bodies in the calculation of DEM. However, the properties of these spherical particles are not applicable to powders consisting of plate-shaped or flaky particles because of the lack of geometrical consideration. Inevitably, the lack of geometrical consideration brings the misunderstanding of the powder flow with plate-shaped particles. In this research study, we suggest a new model, called flaky particles, consisting of a series of spherical particles to simulate the behavior of powder with spherical particles. To mimic the dynamic behavior of the hard particles, the relative motion of spherical particles, constituting a plate, is restricted. Afterwards, the suggested model is validated by the drop-and-bounce test and by theoretical results. The magnitude of the errors in the computation of the translational and the rotational velocities after collision are compared and the results show that the generated error is negligible (below 2%).
Tài liệu tham khảo
F. van der Kooij, K. Kassapidou, H.N. Lekkerkerker, Nature (2000). https://doi.org/10.1038/35022535
H. Gabrischa, J. Wilcoxb, M.M. Doeffb, Electrochem. Solid-State Lett. (2008). https://doi.org/10.1149/1.2826746
K.G. Russell, M.F. Ashby, Acta Metall. (1970). https://doi.org/10.1016/0001-6160(70)90017-9
A.A. Verhoeff, I.A. Bakelaar, R.H. Otten, P.P. van der Schoot, H.N. Lekkerkerker, Langmuir (2011). https://doi.org/10.1021/la104128m
M.C. Mourad, J.E. Wijnhoven, D.D. Van’t Zand, D. van der Beek, H.N. Lekkerkerker, Philos. Trans. R. Soc. (2006). https://doi.org/10.1098/rsta.2006.1856
S. Junaid, S. Qazi, G. Karlsson, A.R. Renniea, J. Colloid Interface Sci. (2010). https://doi.org/10.1016/j.jcis.2010.04.033
N.A. Sapoletova, S.E. Kushnir, Y.H. Li, S.Y. An, J. Seo, K.H. Hur, J. Magn. Magn. Mater. (2015). https://doi.org/10.1016/j.jmmm.2015.04.055
Y. Wen, L. Xiang, Y. Jin, Mater. Lett. (2003). https://doi.org/10.1016/S0167-577X(02)01312-5
Y. Jiao, Y. Han, J. Electron. Mater. (2019). https://doi.org/10.1007/s11664-019-07746-x
M. Miura, H. Hongoh, T. Yogo, J. Mater. Sci. (1994). https://doi.org/10.1007/BF00356602
E. Burgaz, in Polyurethane Insulation Foams for Energy and Sustainability, ed. by E. Burgaz (Springer, Cham, 2019), pp. 103–164. https://doi.org/10.1007/978-3-030-19558-8_2
K. Dong, C. Wang, A. Yu, Chem. Eng. Sci. (2015). https://doi.org/10.1016/j.ces.2014.12.059
G. Lu, J.R. Third, C.R. Muller, Chem. Eng. Sci. (2015). https://doi.org/10.1016/j.ces.2014.11.050
D. Hohner, S. Wirtz, V. Scherer, Powder Tech. (2015). https://doi.org/10.1016/j.powtec.2015.02.046
S. Lee, J. Park, Multiscale Sci. Eng. (2019). https://doi.org/10.1007/s42493-019-00020-6
J.T. Han, H.J. Jeong, S.Y. Jeong, G.-W. Lee, Polym. Sci. Technol. 23, 513–524 (2012)
A. Contala, M.M. Krzmanc, D. Suvorov, Acta Chim. Slov. (2018). https://doi.org/10.17344/acsi.2018.4286
S.-H. An, J. Park, J. Korean Soc. Manuf. Process Eng. (2017). https://doi.org/10.14775/ksmpe.2017.16.2.0149
Y. Kim, J. Park, J. Korean Soc. Manuf. Process Eng. (2018). https://doi.org/10.14775/ksmpe.2018.17.3.022