Discovery of multi-anion antiperovskites X6NFSn2 (X = Ca, Sr) as promising thermoelectric materials by computational screening

Matter - 2023
Dan Han1,2,3, Bonan Zhu2, Zenghua Cai4, Kieran B. Spooner2,3, Stefan S. Rudel1, Wolfgang Schnick1, Thomas Bein1, David O. Scanlon2,3, Hubert Ebert1
1Department of Chemistry and Center for NanoScience (CeNS), University of Munich (LMU), 81377 Munich, Germany
2Department of Chemistry, University College London, London WC1H 0AJ, UK
3School of Chemistry, University of Birmingham, Birmingham B15 2TT, UK
4Jiangsu Key Laboratory of Micro and Nano Heat Fluid Flow Technology and Energy Application, School of Physical Science and Technology, Suzhou University of Science and Technology, Suzhou 215009, China

Tài liệu tham khảo

Nolas, 2001, 45 Finn, 2021, Thermoelectric Materials: Current Status and Future Challenges, Front. Electron. Mater., 1, 677845, 10.3389/femat.2021.677845 Ioffe, 1959, Semiconductor thermoelements and thermoelectric cooling, Phys. Today, 12, 42, 10.1063/1.3060810 Beekman, 2015, Better thermoelectrics through glass-like crystals, Nat. Mater., 14, 1182, 10.1038/nmat4461 Snyder, 2008, Complex thermoelectric materials, Nat. Mater., 7, 105, 10.1038/nmat2090 Slack, 1995 Morelli, 1995, Low temperature properties of the filled skutterudite CeFe4Sb12, J. Appl. Phys., 77, 3777, 10.1063/1.358552 Sales, 1996, Filled skutterudite antimonides: a new class of thermoelectric materials, Science, 272, 1325, 10.1126/science.272.5266.1325 Cohn, 1999, Glasslike heat conduction in high-mobility crystalline semiconductors, Phys. Rev. Lett., 82, 779, 10.1103/PhysRevLett.82.779 Xie, 2020, All-inorganic halide perovskites as potential thermoelectric materials: dynamic cation off-centering induces ultralow thermal conductivity, J. Am. Chem. Soc., 142, 9553, 10.1021/jacs.0c03427 Wu, 2018, Development of perovskite-type materials for thermoelectric application, Materials, 11, 999, 10.3390/ma11060999 Feng, 2015, Phonon transport in perovskite SrTiO3 from first principles, APEX, 8 Xiao, 2016, Origin of low thermal conductivity in SnSe, Phys. Rev. B, 94, 125203, 10.1103/PhysRevB.94.125203 Shi, 2020, SrTiO3-based thermoelectrics: Progress and challenges, Nano Energy, 78, 105195, 10.1016/j.nanoen.2020.105195 Zhou, 2021, Polycrystalline SnSe with a thermoelectric figure of merit greater than the single crystal, Nat. Mater., 20, 1378, 10.1038/s41563-021-01064-6 Tan, 2016, Non-equilibrium processing leads to record high thermoelectric figure of merit in PbTe–SrTe, Nat. Commun., 7, 12167, 10.1038/ncomms12167 Ren, 2019, Complex electronic structure and compositing effect in high performance thermoelectric BiCuSeO, Nat. Commun., 10, 2814, 10.1038/s41467-019-10476-7 Quinn, 2021, Advances in half-Heusler alloys for thermoelectric power generation, Mater. Adv., 2, 6246, 10.1039/D1MA00707F Stranks, 2013, Electron-hole diffusion lengths exceeding 1 micrometer in an organometal trihalide perovskite absorber, Science, 342, 341, 10.1126/science.1243982 Shi, 2015, Low trap-state density and long carrier diffusion in organolead trihalide perovskite single crystals, Science, 347, 519, 10.1126/science.aaa2725 Yoo, 2021, Efficient perovskite solar cells via improved carrier management, Nature, 590, 587, 10.1038/s41586-021-03285-w Hu, 2014, High-performance flexible broadband photodetector based on organolead halide perovskite, Adv. Funct. Mater., 24, 7373, 10.1002/adfm.201402020 Guo, 2021, Degradation mechanisms of perovskite solar cells under vacuum and one atmosphere of nitrogen, Nat. Energy, 6, 977, 10.1038/s41560-021-00912-8 Stoumpos, 2013, Semiconducting tin and lead iodide perovskites with organic cations: phase transitions, high mobilities, and near-infrared photoluminescent properties, Inorg. Chem., 52, 9019, 10.1021/ic401215x Pisoni, 2014, Ultra-low thermal conductivity in organic–inorganic hybrid perovskite CH3NH3PbI3, J. Phys. Chem. Lett., 5, 2488, 10.1021/jz5012109 Lee, 2017, Ultralow thermal conductivity in all-inorganic halide perovskites, Proc. Natl. Acad. Sci. USA, 114, 8693, 10.1073/pnas.1711744114 Haque, 2020, Halide perovskites: thermal transport and prospects for thermoelectricity, Adv. Sci., 7, 1903389, 10.1002/advs.201903389 Zhou, 2022, Recent progress of halide perovskites for thermoelectric application, Nano Energy, 94, 106949, 10.1016/j.nanoen.2022.106949 Yin, 2014, Unusual defect physics in CH3NH3PbI3 perovskite solar cell absorber, Appl. Phys. Lett., 104, 10.1063/1.4864778 Walsh, 2015, Self-regulation mechanism for charged point defects in hybrid halide perovskites, Angew. Chem., 127, 1811, 10.1002/ange.201409740 Du, 2015, Density Functional Calculations of Native Defects in CH3NH3PbI3: Effects of Spin-Orbit Coupling and Self-Interaction Error, J. Phys. Chem. Lett., 6, 1461, 10.1021/acs.jpclett.5b00199 Chung, 2012, CsSnI3: semiconductor or metal? High electrical conductivity and strong near-infrared photoluminescence from a single material. High hole mobility and phase-transitions, J. Am. Chem. Soc., 134, 8579, 10.1021/ja301539s Takahashi, 2013, Hall mobility in tin iodide perovskite CH3NH3SnI3: Evidence for a doped semiconductor, J. Solid State Chem., 205, 39, 10.1016/j.jssc.2013.07.008 Tang, 2022, High thermoelectric performance based on CsSnI3 thin films with improved stability, J. Mater. Chem. A, 10, 7020, 10.1039/D1TA11093D Zheng, 2022, A universal all-solid synthesis for high throughput production of halide perovskite, Nat. Commun., 13, 7399, 10.1038/s41467-022-35122-7 Haque, 2019, DFT based study on structural stability and transport properties of Sr3AsN: A potential thermoelectric material, J. Mater. Res., 34, 2635, 10.1557/jmr.2019.146 Ochi, 2019, Comparative first-principles study of antiperovskite oxides and nitrides as thermoelectric material: multiple Dirac cones, low-dimensional band dispersion, and high valley degeneracy, Phys. Rev. Appl., 12, 10.1103/PhysRevApplied.12.034009 Okamoto, 2016, Thermoelectric properties of antiperovskite calcium oxides Ca3PbO and Ca3SnO, J. Appl. Phys., 119, 205106, 10.1063/1.4952393 Rani, 2021, Emerging potential antiperovskite materials ANX3 (A= P, As, Sb, Bi; X= Sr, Ca, Mg) for thermoelectric renewable energy generators, J. Solid State Chem., 300, 122246, 10.1016/j.jssc.2021.122246 Rani, 2021, Electronic and thermo-physical properties of double antiperovskites X6SOA2 (X = Na, K and A = Cl, Br, I): A non-toxic and efficient energy storage materials, Int. J. Quant. Chem., 121, e26759, 10.1002/qua.26759 Gebhardt, 2017, Adding to the perovskite universe: inverse-hybrid perovskites, ACS Energy Lett., 2, 2681, 10.1021/acsenergylett.7b00966 Wang, 2020, Antiperovskites with exceptional functionalities, Adv. Mater., 32, 1905007, 10.1002/adma.201905007 Han, 2021, Design of High-Performance Lead-Free Quaternary Antiperovskites for Photovoltaics via Ion Type Inversion and Anion Ordering, J. Am. Chem. Soc., 143, 12369, 10.1021/jacs.1c06403 Han, 2022, Ground-state structures, electronic structure, transport properties and optical properties of Ca-based anti-Ruddlesden-Popper phase oxide perovskites, Phys. Rev. Mater., 6, 114601, 10.1103/PhysRevMaterials.6.114601 Rani, 2021, Fundamental theoretical design of Na-ion and K-ion based double antiperovskite X6SOA2 (X = Na, K; A = Cl, Br and I) halides: Potential candidate for energy storage and harvester, Int. J. Energy Res., 45, 13442, 10.1002/er.6673 Kumar, 2021, Thermoelectric properties of GaN with carrier concentration modulation: an experimental and theoretical investigation, Phys. Chem. Chem. Phys., 23, 1601, 10.1039/D0CP03950K Wang, 2021, Intrinsically low lattice thermal conductivity of monolayer hexagonal aluminum nitride (h-AlN) from first-principles: A comparative study with graphene, Int. J. Therm. Sci., 162, 106772, 10.1016/j.ijthermalsci.2020.106772 Yan, 2022, High power efficiency nitrides thermoelectric device, Nano Energy, 101, 107568, 10.1016/j.nanoen.2022.107568 Pickard, 2011, Ab initio random structure searching, J. Phys. Condens. Matter, 23, 10.1088/0953-8984/23/5/053201 Pickard, 2006, High-pressure phases of silane, Phys. Rev. Lett., 97, 10.1103/PhysRevLett.97.045504 Wang, 2012, CALYPSO: A method for crystal structure prediction, Comput. Phys. Commun., 183, 2063, 10.1016/j.cpc.2012.05.008 Wang, 2010, Crystal structure prediction via particle-swarm optimization, Phys. Rev. B, 82 Glazer, 1972, The classification of tilted octahedra in perovskites, Acta Crystallogr. B, 28, 3384, 10.1107/S0567740872007976 Howard, 2003, Ordered double perovskites–a group-theoretical analysis, Acta Crystallogr. B, 59, 463, 10.1107/S0108768103010073 Born, 1955, Dynamical theory of crystal lattices, Am. J. Phys., 23, 474, 10.1119/1.1934059 Jain, 2013, Commentary: The Materials Project: A Materials Genome Approach to Accelerating Materials Innovation, Apl. Mater., 1, 10.1063/1.4812323 Saal, 2013, Materials design and discovery with high-throughput density functional theory: the open quantum materials database (OQMD), J. Miner. Met. Mater. Soc., 65, 1501, 10.1007/s11837-013-0755-4 Curtarolo, 2012, AFLOW: An automatic framework for high-throughput materials discovery, Comput. Mater. Sci., 58, 218, 10.1016/j.commatsci.2012.02.005 Hadenfeldt, 1988, Darstellung und Kristallstruktur der Calciumpnictidiodide Ca2Nl, Ca2Pl und Ca2Asl, Z. Anorg. Allg. Chem., 558, 35, 10.1002/zaac.19885580104 Bailey, 2011, New ternary and quaternary barium nitride halides; synthesis and crystal chemistry, Inorg. Chem., 50, 9545, 10.1021/ic201264u Liu, 2013, Synthesis and single-crystal structure determination of the zinc nitride halides Zn2NX (X= Cl, Br, I), J. Solid State Chem., 203, 31, 10.1016/j.jssc.2013.03.046 Skelton, 2016, Anharmonicity in the High-Temperature Cmcm Phase of SnSe: Soft Modes and Three-Phonon Interactions, Phys. Rev. Lett., 117, 10.1103/PhysRevLett.117.075502 Du, 2010, Enhanced Born charge and proximity to ferroelectricity in thallium halides, Phys. Rev. B, 81, 144114, 10.1103/PhysRevB.81.144114 Poncé, 2018, Towards predictive many-body calculations of phonon-limited carrier mobilities in semiconductors, Phys. Rev. B, 97, 121201, 10.1103/PhysRevB.97.121201 Noffsinger, 2010, EPW: A program for calculating the electron–phonon coupling using maximally localized Wannier functions, Comput. Phys. Commun., 181, 2140, 10.1016/j.cpc.2010.08.027 Ganose, 2021, Efficient calculation of carrier scattering rates from first principles, Nat. Commun., 12, 2222, 10.1038/s41467-021-22440-5 Flitcroft, 2022, Thermoelectric Properties of Pnma and Rocksalt SnS and SnSe, Solids, 3, 155, 10.3390/solids3010011 Zhao, 2016, Ultrahigh power factor and thermoelectric performance in hole-doped single-crystal SnSe, Science, 351, 141, 10.1126/science.aad3749 Kang, 2023, Native point defects in antiperovskite Ba3SbN: a promising semiconductor for photovoltaics, Phys. Chem. Chem. Phys., 25, 9800, 10.1039/D3CP00619K Dai, 2019, Bi(Sb)NCa3: Expansion of Perovskite Photovoltaics into All-Inorganic Anti-Perovskite Materials, J. Phys. Chem. C, 123, 6363, 10.1021/acs.jpcc.8b11821 Foster, 2019, Doping optimization for the power factor of bipolar thermoelectric materials, J. Electron. Mater., 48, 1889, 10.1007/s11664-018-06857-1 Wu, 2015, Superior thermoelectric performance in PbTe–PbS pseudo-binary: extremely low thermal conductivity and modulated carrier concentration, Energy Environ. Sci., 8, 2056, 10.1039/C5EE01147G Gong, 2016, Investigation of the bipolar effect in the thermoelectric material CaMg2Bi2 using a first-principles study, Phys. Chem. Chem. Phys., 18, 16566, 10.1039/C6CP02057G Wei, 2014, Study of lattice thermal conductivity of PbS, J. Alloys Compd., 584, 381, 10.1016/j.jallcom.2013.09.081 Togo, 2015, Distributions of phonon lifetimes in Brillouin zones, Phys. Rev. B, 91, 10.1103/PhysRevB.91.094306 Chaput, 2013, Direct solution to the linearized phonon Boltzmann equation, Phys. Rev. Lett., 110, 265506, 10.1103/PhysRevLett.110.265506 Lindsay, 2011, Enhanced thermal conductivity and isotope effect in single-layer hexagonal boron nitride, Phys. Rev. B, 84, 155421, 10.1103/PhysRevB.84.155421 Singh, 2011, Mechanism of thermal conductivity reduction in few-layer graphene, J. Appl. Phys., 110, 10.1063/1.3622300 Fugallo, 2014, Thermal conductivity of graphene and graphite: collective excitations and mean free paths, Nano Lett., 14, 6109, 10.1021/nl502059f Palenzona, 2000, Phase diagram of the Ca–Sn system, J. Alloys Compd., 312, 165, 10.1016/S0925-8388(00)01150-6 Rahim, 2021, Ca4Sb2O and Ca4Bi2O: two promising mixed-anion thermoelectrics, J. Mater. Chem. A, 9, 20417, 10.1039/D1TA03649A Whalley, 2016, Phonon anharmonicity, lifetimes, and thermal transport in CH3NH3PbI3 from many-body perturbation theory, Phys. Rev. B, 94, 220301, 10.1103/PhysRevB.94.220301 Khazaei, 2019, Novel MAB phases and insights into their exfoliation into 2D MBenes, Nanoscale, 11, 11305, 10.1039/C9NR01267B He, 2022, Degenerated Hole Doping and Ultra-Low Lattice Thermal Conductivity in Polycrystalline SnSe by Nonequilibrium Isovalent Te Substitution, Adv. Sci., 9, 2105958, 10.1002/advs.202105958 Sun, 2022, Four-phonon scattering effect and two-channel thermal transport in two-dimensional paraelectric SnSe, ACS Appl. Mater. Interfaces, 14, 11493, 10.1021/acsami.1c24488 Ioffe, 1960 Shao, 2016, A first-principles study on the phonon transport in layered BiCuOSe, Sci. Rep., 6, 21035, 10.1038/srep21035 Clark, 2005, First principles methods using CASTEP, Z. für Kristallogr. - Cryst. Mater., 220, 567, 10.1524/zkri.220.5.567.65075 Kresse, 1996, Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set, Phys. Rev. B, 54, 11169, 10.1103/PhysRevB.54.11169 Perdew, 1996, Generalized gradient approximation made simple, Phys. Rev. Lett., 77, 3865, 10.1103/PhysRevLett.77.3865 Heyd, 2003, Hybrid functionals based on a screened coulomb potential, J. Chem. Phys., 118, 8207, 10.1063/1.1564060 M Ganose, 2018, sumo: Command-line tools for plotting and analysis of periodic ab initio calculations, J. Open Source Softw., 3, 717, 10.21105/joss.00717 Togo, 2015, First principles phonon calculations in materials science, Scripta Mater., 108, 1, 10.1016/j.scriptamat.2015.07.021 Poncé, 2020, First-principles calculations of charge carrier mobility and conductivity in bulk semiconductors and two-dimensional materials, Rep. Prog. Phys., 83, 10.1088/1361-6633/ab6a43 Baroni, 2001, Phonons and related crystal properties from density-functional perturbation theory, Rev. Mod. Phys., 73, 515, 10.1103/RevModPhys.73.515 Wang, 2021, Absolute Volume Deformation Potentials of Inorganic ABX3 Halide Perovskites: The Chemical Trends, Adv. Theory Simul., 4, 2100060, 10.1002/adts.202100060 McGaughey, 2004, Quantitative validation of the Boltzmann transport equation phonon thermal conductivity model under the single-mode relaxation time approximation, Phys. Rev. B, 69, 10.1103/PhysRevB.69.094303 Eriksson, 2019, The hiphive package for the extraction of high-order force constants by machine learning, Adv. Theory Simul., 2, 1800184, 10.1002/adts.201800184 Brorsson, 2022, Efficient Calculation of the Lattice Thermal Conductivity by Atomistic Simulations with Ab Initio Accuracy, Adv. Theory Simul., 5, 2100217, 10.1002/adts.202100217 Spooner Brlec, 2022, Y2Ti2O5S2 – a promising n-type oxysulphide for thermoelectric applications, J. Mater. Chem. A, 10, 16813, 10.1039/D2TA04160J Spooner, 2021, BaBi2O6: A Promising n-Type Thermoelectric Oxide with the PbSb2O6 Crystal Structure, Chem. Mater., 33, 7441, 10.1021/acs.chemmater.1c02164