Discovery of multi-anion antiperovskites X6NFSn2 (X = Ca, Sr) as promising thermoelectric materials by computational screening
Matter - 2023
Tài liệu tham khảo
Nolas, 2001, 45
Finn, 2021, Thermoelectric Materials: Current Status and Future Challenges, Front. Electron. Mater., 1, 677845, 10.3389/femat.2021.677845
Ioffe, 1959, Semiconductor thermoelements and thermoelectric cooling, Phys. Today, 12, 42, 10.1063/1.3060810
Beekman, 2015, Better thermoelectrics through glass-like crystals, Nat. Mater., 14, 1182, 10.1038/nmat4461
Snyder, 2008, Complex thermoelectric materials, Nat. Mater., 7, 105, 10.1038/nmat2090
Slack, 1995
Morelli, 1995, Low temperature properties of the filled skutterudite CeFe4Sb12, J. Appl. Phys., 77, 3777, 10.1063/1.358552
Sales, 1996, Filled skutterudite antimonides: a new class of thermoelectric materials, Science, 272, 1325, 10.1126/science.272.5266.1325
Cohn, 1999, Glasslike heat conduction in high-mobility crystalline semiconductors, Phys. Rev. Lett., 82, 779, 10.1103/PhysRevLett.82.779
Xie, 2020, All-inorganic halide perovskites as potential thermoelectric materials: dynamic cation off-centering induces ultralow thermal conductivity, J. Am. Chem. Soc., 142, 9553, 10.1021/jacs.0c03427
Wu, 2018, Development of perovskite-type materials for thermoelectric application, Materials, 11, 999, 10.3390/ma11060999
Feng, 2015, Phonon transport in perovskite SrTiO3 from first principles, APEX, 8
Xiao, 2016, Origin of low thermal conductivity in SnSe, Phys. Rev. B, 94, 125203, 10.1103/PhysRevB.94.125203
Shi, 2020, SrTiO3-based thermoelectrics: Progress and challenges, Nano Energy, 78, 105195, 10.1016/j.nanoen.2020.105195
Zhou, 2021, Polycrystalline SnSe with a thermoelectric figure of merit greater than the single crystal, Nat. Mater., 20, 1378, 10.1038/s41563-021-01064-6
Tan, 2016, Non-equilibrium processing leads to record high thermoelectric figure of merit in PbTe–SrTe, Nat. Commun., 7, 12167, 10.1038/ncomms12167
Ren, 2019, Complex electronic structure and compositing effect in high performance thermoelectric BiCuSeO, Nat. Commun., 10, 2814, 10.1038/s41467-019-10476-7
Quinn, 2021, Advances in half-Heusler alloys for thermoelectric power generation, Mater. Adv., 2, 6246, 10.1039/D1MA00707F
Stranks, 2013, Electron-hole diffusion lengths exceeding 1 micrometer in an organometal trihalide perovskite absorber, Science, 342, 341, 10.1126/science.1243982
Shi, 2015, Low trap-state density and long carrier diffusion in organolead trihalide perovskite single crystals, Science, 347, 519, 10.1126/science.aaa2725
Yoo, 2021, Efficient perovskite solar cells via improved carrier management, Nature, 590, 587, 10.1038/s41586-021-03285-w
Hu, 2014, High-performance flexible broadband photodetector based on organolead halide perovskite, Adv. Funct. Mater., 24, 7373, 10.1002/adfm.201402020
Guo, 2021, Degradation mechanisms of perovskite solar cells under vacuum and one atmosphere of nitrogen, Nat. Energy, 6, 977, 10.1038/s41560-021-00912-8
Stoumpos, 2013, Semiconducting tin and lead iodide perovskites with organic cations: phase transitions, high mobilities, and near-infrared photoluminescent properties, Inorg. Chem., 52, 9019, 10.1021/ic401215x
Pisoni, 2014, Ultra-low thermal conductivity in organic–inorganic hybrid perovskite CH3NH3PbI3, J. Phys. Chem. Lett., 5, 2488, 10.1021/jz5012109
Lee, 2017, Ultralow thermal conductivity in all-inorganic halide perovskites, Proc. Natl. Acad. Sci. USA, 114, 8693, 10.1073/pnas.1711744114
Haque, 2020, Halide perovskites: thermal transport and prospects for thermoelectricity, Adv. Sci., 7, 1903389, 10.1002/advs.201903389
Zhou, 2022, Recent progress of halide perovskites for thermoelectric application, Nano Energy, 94, 106949, 10.1016/j.nanoen.2022.106949
Yin, 2014, Unusual defect physics in CH3NH3PbI3 perovskite solar cell absorber, Appl. Phys. Lett., 104, 10.1063/1.4864778
Walsh, 2015, Self-regulation mechanism for charged point defects in hybrid halide perovskites, Angew. Chem., 127, 1811, 10.1002/ange.201409740
Du, 2015, Density Functional Calculations of Native Defects in CH3NH3PbI3: Effects of Spin-Orbit Coupling and Self-Interaction Error, J. Phys. Chem. Lett., 6, 1461, 10.1021/acs.jpclett.5b00199
Chung, 2012, CsSnI3: semiconductor or metal? High electrical conductivity and strong near-infrared photoluminescence from a single material. High hole mobility and phase-transitions, J. Am. Chem. Soc., 134, 8579, 10.1021/ja301539s
Takahashi, 2013, Hall mobility in tin iodide perovskite CH3NH3SnI3: Evidence for a doped semiconductor, J. Solid State Chem., 205, 39, 10.1016/j.jssc.2013.07.008
Tang, 2022, High thermoelectric performance based on CsSnI3 thin films with improved stability, J. Mater. Chem. A, 10, 7020, 10.1039/D1TA11093D
Zheng, 2022, A universal all-solid synthesis for high throughput production of halide perovskite, Nat. Commun., 13, 7399, 10.1038/s41467-022-35122-7
Haque, 2019, DFT based study on structural stability and transport properties of Sr3AsN: A potential thermoelectric material, J. Mater. Res., 34, 2635, 10.1557/jmr.2019.146
Ochi, 2019, Comparative first-principles study of antiperovskite oxides and nitrides as thermoelectric material: multiple Dirac cones, low-dimensional band dispersion, and high valley degeneracy, Phys. Rev. Appl., 12, 10.1103/PhysRevApplied.12.034009
Okamoto, 2016, Thermoelectric properties of antiperovskite calcium oxides Ca3PbO and Ca3SnO, J. Appl. Phys., 119, 205106, 10.1063/1.4952393
Rani, 2021, Emerging potential antiperovskite materials ANX3 (A= P, As, Sb, Bi; X= Sr, Ca, Mg) for thermoelectric renewable energy generators, J. Solid State Chem., 300, 122246, 10.1016/j.jssc.2021.122246
Rani, 2021, Electronic and thermo-physical properties of double antiperovskites X6SOA2 (X = Na, K and A = Cl, Br, I): A non-toxic and efficient energy storage materials, Int. J. Quant. Chem., 121, e26759, 10.1002/qua.26759
Gebhardt, 2017, Adding to the perovskite universe: inverse-hybrid perovskites, ACS Energy Lett., 2, 2681, 10.1021/acsenergylett.7b00966
Wang, 2020, Antiperovskites with exceptional functionalities, Adv. Mater., 32, 1905007, 10.1002/adma.201905007
Han, 2021, Design of High-Performance Lead-Free Quaternary Antiperovskites for Photovoltaics via Ion Type Inversion and Anion Ordering, J. Am. Chem. Soc., 143, 12369, 10.1021/jacs.1c06403
Han, 2022, Ground-state structures, electronic structure, transport properties and optical properties of Ca-based anti-Ruddlesden-Popper phase oxide perovskites, Phys. Rev. Mater., 6, 114601, 10.1103/PhysRevMaterials.6.114601
Rani, 2021, Fundamental theoretical design of Na-ion and K-ion based double antiperovskite X6SOA2 (X = Na, K; A = Cl, Br and I) halides: Potential candidate for energy storage and harvester, Int. J. Energy Res., 45, 13442, 10.1002/er.6673
Kumar, 2021, Thermoelectric properties of GaN with carrier concentration modulation: an experimental and theoretical investigation, Phys. Chem. Chem. Phys., 23, 1601, 10.1039/D0CP03950K
Wang, 2021, Intrinsically low lattice thermal conductivity of monolayer hexagonal aluminum nitride (h-AlN) from first-principles: A comparative study with graphene, Int. J. Therm. Sci., 162, 106772, 10.1016/j.ijthermalsci.2020.106772
Yan, 2022, High power efficiency nitrides thermoelectric device, Nano Energy, 101, 107568, 10.1016/j.nanoen.2022.107568
Pickard, 2011, Ab initio random structure searching, J. Phys. Condens. Matter, 23, 10.1088/0953-8984/23/5/053201
Pickard, 2006, High-pressure phases of silane, Phys. Rev. Lett., 97, 10.1103/PhysRevLett.97.045504
Wang, 2012, CALYPSO: A method for crystal structure prediction, Comput. Phys. Commun., 183, 2063, 10.1016/j.cpc.2012.05.008
Wang, 2010, Crystal structure prediction via particle-swarm optimization, Phys. Rev. B, 82
Glazer, 1972, The classification of tilted octahedra in perovskites, Acta Crystallogr. B, 28, 3384, 10.1107/S0567740872007976
Howard, 2003, Ordered double perovskites–a group-theoretical analysis, Acta Crystallogr. B, 59, 463, 10.1107/S0108768103010073
Born, 1955, Dynamical theory of crystal lattices, Am. J. Phys., 23, 474, 10.1119/1.1934059
Jain, 2013, Commentary: The Materials Project: A Materials Genome Approach to Accelerating Materials Innovation, Apl. Mater., 1, 10.1063/1.4812323
Saal, 2013, Materials design and discovery with high-throughput density functional theory: the open quantum materials database (OQMD), J. Miner. Met. Mater. Soc., 65, 1501, 10.1007/s11837-013-0755-4
Curtarolo, 2012, AFLOW: An automatic framework for high-throughput materials discovery, Comput. Mater. Sci., 58, 218, 10.1016/j.commatsci.2012.02.005
Hadenfeldt, 1988, Darstellung und Kristallstruktur der Calciumpnictidiodide Ca2Nl, Ca2Pl und Ca2Asl, Z. Anorg. Allg. Chem., 558, 35, 10.1002/zaac.19885580104
Bailey, 2011, New ternary and quaternary barium nitride halides; synthesis and crystal chemistry, Inorg. Chem., 50, 9545, 10.1021/ic201264u
Liu, 2013, Synthesis and single-crystal structure determination of the zinc nitride halides Zn2NX (X= Cl, Br, I), J. Solid State Chem., 203, 31, 10.1016/j.jssc.2013.03.046
Skelton, 2016, Anharmonicity in the High-Temperature Cmcm Phase of SnSe: Soft Modes and Three-Phonon Interactions, Phys. Rev. Lett., 117, 10.1103/PhysRevLett.117.075502
Du, 2010, Enhanced Born charge and proximity to ferroelectricity in thallium halides, Phys. Rev. B, 81, 144114, 10.1103/PhysRevB.81.144114
Poncé, 2018, Towards predictive many-body calculations of phonon-limited carrier mobilities in semiconductors, Phys. Rev. B, 97, 121201, 10.1103/PhysRevB.97.121201
Noffsinger, 2010, EPW: A program for calculating the electron–phonon coupling using maximally localized Wannier functions, Comput. Phys. Commun., 181, 2140, 10.1016/j.cpc.2010.08.027
Ganose, 2021, Efficient calculation of carrier scattering rates from first principles, Nat. Commun., 12, 2222, 10.1038/s41467-021-22440-5
Flitcroft, 2022, Thermoelectric Properties of Pnma and Rocksalt SnS and SnSe, Solids, 3, 155, 10.3390/solids3010011
Zhao, 2016, Ultrahigh power factor and thermoelectric performance in hole-doped single-crystal SnSe, Science, 351, 141, 10.1126/science.aad3749
Kang, 2023, Native point defects in antiperovskite Ba3SbN: a promising semiconductor for photovoltaics, Phys. Chem. Chem. Phys., 25, 9800, 10.1039/D3CP00619K
Dai, 2019, Bi(Sb)NCa3: Expansion of Perovskite Photovoltaics into All-Inorganic Anti-Perovskite Materials, J. Phys. Chem. C, 123, 6363, 10.1021/acs.jpcc.8b11821
Foster, 2019, Doping optimization for the power factor of bipolar thermoelectric materials, J. Electron. Mater., 48, 1889, 10.1007/s11664-018-06857-1
Wu, 2015, Superior thermoelectric performance in PbTe–PbS pseudo-binary: extremely low thermal conductivity and modulated carrier concentration, Energy Environ. Sci., 8, 2056, 10.1039/C5EE01147G
Gong, 2016, Investigation of the bipolar effect in the thermoelectric material CaMg2Bi2 using a first-principles study, Phys. Chem. Chem. Phys., 18, 16566, 10.1039/C6CP02057G
Wei, 2014, Study of lattice thermal conductivity of PbS, J. Alloys Compd., 584, 381, 10.1016/j.jallcom.2013.09.081
Togo, 2015, Distributions of phonon lifetimes in Brillouin zones, Phys. Rev. B, 91, 10.1103/PhysRevB.91.094306
Chaput, 2013, Direct solution to the linearized phonon Boltzmann equation, Phys. Rev. Lett., 110, 265506, 10.1103/PhysRevLett.110.265506
Lindsay, 2011, Enhanced thermal conductivity and isotope effect in single-layer hexagonal boron nitride, Phys. Rev. B, 84, 155421, 10.1103/PhysRevB.84.155421
Singh, 2011, Mechanism of thermal conductivity reduction in few-layer graphene, J. Appl. Phys., 110, 10.1063/1.3622300
Fugallo, 2014, Thermal conductivity of graphene and graphite: collective excitations and mean free paths, Nano Lett., 14, 6109, 10.1021/nl502059f
Palenzona, 2000, Phase diagram of the Ca–Sn system, J. Alloys Compd., 312, 165, 10.1016/S0925-8388(00)01150-6
Rahim, 2021, Ca4Sb2O and Ca4Bi2O: two promising mixed-anion thermoelectrics, J. Mater. Chem. A, 9, 20417, 10.1039/D1TA03649A
Whalley, 2016, Phonon anharmonicity, lifetimes, and thermal transport in CH3NH3PbI3 from many-body perturbation theory, Phys. Rev. B, 94, 220301, 10.1103/PhysRevB.94.220301
Khazaei, 2019, Novel MAB phases and insights into their exfoliation into 2D MBenes, Nanoscale, 11, 11305, 10.1039/C9NR01267B
He, 2022, Degenerated Hole Doping and Ultra-Low Lattice Thermal Conductivity in Polycrystalline SnSe by Nonequilibrium Isovalent Te Substitution, Adv. Sci., 9, 2105958, 10.1002/advs.202105958
Sun, 2022, Four-phonon scattering effect and two-channel thermal transport in two-dimensional paraelectric SnSe, ACS Appl. Mater. Interfaces, 14, 11493, 10.1021/acsami.1c24488
Ioffe, 1960
Shao, 2016, A first-principles study on the phonon transport in layered BiCuOSe, Sci. Rep., 6, 21035, 10.1038/srep21035
Clark, 2005, First principles methods using CASTEP, Z. für Kristallogr. - Cryst. Mater., 220, 567, 10.1524/zkri.220.5.567.65075
Kresse, 1996, Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set, Phys. Rev. B, 54, 11169, 10.1103/PhysRevB.54.11169
Perdew, 1996, Generalized gradient approximation made simple, Phys. Rev. Lett., 77, 3865, 10.1103/PhysRevLett.77.3865
Heyd, 2003, Hybrid functionals based on a screened coulomb potential, J. Chem. Phys., 118, 8207, 10.1063/1.1564060
M Ganose, 2018, sumo: Command-line tools for plotting and analysis of periodic ab initio calculations, J. Open Source Softw., 3, 717, 10.21105/joss.00717
Togo, 2015, First principles phonon calculations in materials science, Scripta Mater., 108, 1, 10.1016/j.scriptamat.2015.07.021
Poncé, 2020, First-principles calculations of charge carrier mobility and conductivity in bulk semiconductors and two-dimensional materials, Rep. Prog. Phys., 83, 10.1088/1361-6633/ab6a43
Baroni, 2001, Phonons and related crystal properties from density-functional perturbation theory, Rev. Mod. Phys., 73, 515, 10.1103/RevModPhys.73.515
Wang, 2021, Absolute Volume Deformation Potentials of Inorganic ABX3 Halide Perovskites: The Chemical Trends, Adv. Theory Simul., 4, 2100060, 10.1002/adts.202100060
McGaughey, 2004, Quantitative validation of the Boltzmann transport equation phonon thermal conductivity model under the single-mode relaxation time approximation, Phys. Rev. B, 69, 10.1103/PhysRevB.69.094303
Eriksson, 2019, The hiphive package for the extraction of high-order force constants by machine learning, Adv. Theory Simul., 2, 1800184, 10.1002/adts.201800184
Brorsson, 2022, Efficient Calculation of the Lattice Thermal Conductivity by Atomistic Simulations with Ab Initio Accuracy, Adv. Theory Simul., 5, 2100217, 10.1002/adts.202100217
Spooner
Brlec, 2022, Y2Ti2O5S2 – a promising n-type oxysulphide for thermoelectric applications, J. Mater. Chem. A, 10, 16813, 10.1039/D2TA04160J
Spooner, 2021, BaBi2O6: A Promising n-Type Thermoelectric Oxide with the PbSb2O6 Crystal Structure, Chem. Mater., 33, 7441, 10.1021/acs.chemmater.1c02164