Discovery of microbial natural products by activation of silent biosynthetic gene clusters

Nature Reviews Microbiology - Tập 13 Số 8 - Trang 509-523 - 2015
Peter J. Rutledge1, Gregory L. Challis2
1School of Chemistry, The University of Sydney, New South Wales 2006, Australia
2Department of Chemistry, University of Warwick, Coventry, CV4 7AL, UK

Tóm tắt

Từ khóa


Tài liệu tham khảo

Demain, A. L. & Sanchez, S. Microbial drug discovery: 80 years of progress. J. Antibiot. 62, 5–16 (2009).

Cantrell, C. L., Dayan, F. E. & Duke, S. O. Natural products as sources for new pesticides. J. Nat. Prod. 75, 1231–1242 (2012).

Davies, J. & Davies, D. Origins and evolution of antibiotic resistance. Microbiol. Mol. Biol. Rev. 74, 417–433 (2010).

Oerke, E.-C. & Dehne, H.-W. Safeguarding production — losses in major crops and the role of crop protection. Crop Prot. 23, 275–285 (2004).

Fowler, V. G. et al. Daptomycin versus standard therapy for bacteremia and endocarditis caused by Staphylococcus aureus. N. Engl. J. Med. 355, 653–655 (2006).

Louie, T. J. et al. Fidaxomicin versus vancomycin for Clostridium difficile infection. N. Engl. J. Med. 364, 422–431 (2011).

Kim, K. B. & Crews, C. M. From epoxomicin to carfilzomib: chemistry, biology, and medical outcomes. Nat. Prod. Rep. 30, 600–604 (2013).

Tulp, M. & Bohlin, L. Rediscovery of known natural compounds: nuisance or goldmine? Trends Pharmacol. Sci. 26, 175–177 (2005).

von Bubnoff, A. Seeking new antibiotics in nature's backyard. Cell 127, 867–869 (2006).

Bentley, S. D. et al. Complete genome sequence of the model actinomycete Streptomyces coelicolor A3(2). Nature 417, 141–147 (2002).

Omura, S. et al. Genome sequence of an industrial microorganism Streptomyces avermitilis: deducing the ability of producing secondary metabolites. Proc. Natl Acad. Sci. USA 98, 12215–12220 (2001).

Keller, N. P., Turner, G. & Bennett, J. W. Fungal secondary metabolism from biochemistry to genomics. Nat. Rev. Microbiol. 3, 937–947 (2005).

Challis, G. L. Exploitation of the Streptomyces coelicolor A3(2) genome sequence for discovery of new natural products and biosynthetic pathways. J. Ind. Microbiol. Biotechnol. 41, 219–232 (2014).

Challis, G. L. & Ravel, J. Coelichelin, a new peptide siderophore encoded by the Streptomyces coelicolor genome: structure prediction from the sequence of its non-ribosomal peptide synthetase. FEMS Microbiol. Lett. 187, 111–114 (2000).

Pawlik, K., Kotowska, M., Chater, K. F., Kuczek, K. & Takano, E. A cryptic type I polyketide synthase (cpk) gene cluster in Streptomyces coelicolor A3(2). Arch. Microbiol. 187, 87–99 (2007).

Nett, M., Ikeda, H. & Moore, B. S. Genomic basis for natural product biosynthetic diversity in the actinomycetes. Nat. Prod. Rep. 26, 1362–1384 (2009).

Donadio, S., Monciardini, P. & Sosio, M. Polyketide synthases and nonribosomal peptide synthetases: the emerging view from bacterial genomics. Nat. Prod. Rep. 24, 1073–1109 (2007).

Letzel, A. C., Pidot, S. J. & Hertweck, C. A genomic approach to the cryptic secondary metabolome of the anaerobic world. Nat. Prod. Rep. 30, 392–428 (2013).

Wilson, M. C. et al. An environmental bacterial taxon with a large and distinct metabolic repertoire. Nature 506, 58–62 (2014). This article reports a new taxon of 'talented' bacteria with genomes that contain multiple distinct BGCs and are therefore capable of producing a diverse repertoire of interesting specialized metabolites.

Zerikly, M. & Challis, G. L. Strategies for the discovery of new natural products by genome mining. ChemBioChem 10, 625–633 (2009).

Weber, T. et al. Metabolic engineering of antibiotic factories: new tools for antibiotic production in actinomycetes. Trends Biotechnol. 33, 15–26 (2015).

Metsker, M. L. Sequencing technologies — the next generation. Nat. Rev. Genet. 11, 31–46 (2010).

Schorn, M. et al. Genetic basis for the biosynthesis of the pharmaceutically important class of epoxyketone proteasome inhibitors. ACS Chem. Biol. 9, 301–309 (2014).

Gomez-Escribano, J.-P., Song, L., Bibb, M. J. & Challis, G. L. Posttranslational β-methylation and macrolactamidination in the biosynthesis of the bottromycin complex of ribosomal peptide antibiotics. Chem. Sci. 3, 3522–3525 (2012).

Izawa, M., Kawasaki, T. & Haykawa, Y. Cloning and heterologous expression of the thioviridamide biosynthesis gene cluster from Streptomyces olivoviridis. Appl. Environ. Microbiol. 79, 7110–7113 (2013).

Medema, M. H. et al. antiSMASH: rapid identification, annotation and analysis of secondary metabolite biosynthesis gene clusters. Nucleic Acids Res. 39, W339–W346 (2011).

Blin, K. et al. antiSMASH 2.0 — a versatile platform for genome mining of secondary metabolite producers. Nucleic Acids Res. 41, W204–W212 (2013). This paper details the overhaul and upgrade of the genome annotation tool antiSMASH, re-released with this publication as version 2.0.

Blin, K., Kazempour, D., Wohlleben, W. & Weber, T. Improved lanthipeptide detection and prediction for antiSMASH. PLoS ONE 9, e89420 (2014).

Khaldi, N. et al. SMURF: genomic mapping of fungal secondary metabolite clusters. Fungal Genet. Biol. 47, 736–741 (2010).

van Heel, A. J., de Jong, A., Montalbán-López, M., Kok, J. & Kuipers, O. P. BAGEL3: automated identification of genes encoding bacteriocins and (non-)bactericidal posttranslationally modified peptides. Nucleic Acids Res. 41, W448–W453 (2013).

Weber, T. In silico tools for the analysis of antibiotic biosynthetic pathways. Int. J. Med. Microbiol. 304, 230–235 (2014).

Fedorova, N., Moktali, V. & Medema, M. in Fungal Secondary Metabolism (eds Keller, N. P. & Turner, G.) 23–45 (Humana, 2012).

Fischbach, M. A. & Walsh, C. T. Assembly-line enzymology for polyketide and nonribosomal peptide antibiotics: logic, machinery, and mechanisms. Chem. Rev. 106, 3468–3496 (2006).

Treangen, T. J. & Salzberg, S. L. Repetitive DNA and next-generation sequencing: computational challenges and solutions. Nat. Rev. Genet. 13, 36–46 (2012).

Hoefler, B. C., Konganti, K. & Straight, P. D. De novo assembly of the Streptomyces sp. strain Mg1 genome using PacBio single-molecule sequencing. Genome Announc. 1, e00535-13 (2013).

Marchler-Bauer, A. et al. CDD: a Conserved Domain Database for the functional annotation of proteins. Nucleic Acids Res. 39, D225–D229 (2011).

Challis, G. L., Ravel, J. & Townsend, C. A. Predictive, structure-based model of amino acid recognition by non-ribosomal peptide synthetase adenylation domains. Chem. Biol. 7, 211–224 (2000).

Stachelhaus, T., Mootz, H. D. & Marahiel, M. A. The specificity-conferring code of adenylation domains in nonribosomal peptide synthetases. Chem. Biol. 6, 493–505 (1999).

Haydock, S. F. et al. Divergent sequence motifs correlated with the substrate specificity of (methyl)malonyl-CoA:acyl carrier protein transacylase domains in modular polyketide synthases. FEBS Lett. 374, 246–248 (1995).

Keatinge-Clay, A. T. A tylosin ketoreductase reveals how chirality is determined in polyketides. Chem. Biol. 14, 898–908 (2007).

Kwan, D. H. et al. Prediction and manipulation of the stereochemistry of enoylreduction in modular polyketide synthases. Chem. Biol. 15, 1231–1240 (2008).

Nguyen, T. et al. Exploiting the mosaic structure of trans-acyltransferase polyketide synthases for natural product discovery and pathway dissection. Nat. Biotechnol. 26, 225–233 (2008).

Röttig, M. et al. NRPSpredictor2 — a web server for predicting NRPS adenylation domain specificity. Nucleic Acids Res. 39, W362–W367 (2011).

Bachmann, B. O. & Ravel, J. In silico prediction of microbial secondary metabolic pathways from DNA sequence data. Meth. Enzymol. 458, 181–217 (2009).

Anand, S. et al. SBSPKS: structure based sequence analysis of polyketide synthases. Nucleic Acids Res. 38, W487–W496 (2010).

Khayatt, B. I., Overmars L., Siezen, R. J. & Francke, C. Classification of the adenylation and acyl-transferase activity of NRPS and PKS systems using ensembles of substrate specific hidden Markov models. PLoS ONE 8, e62136 (2013).

Wang, J. et al. Platensimycin is a selective FabF inhibitor with potent antibiotic properties. Nature 441, 358–361 (2006).

Brakhage, A. A. Regulation of fungal secondary metabolism. Nat. Rev. Microbiol. 11, 21–32 (2013).

van Wezel, G. P. & McDowall, K. J. The regulation of the secondary metabolism of Streptomyces: new links and experimental advances. Nat. Prod. Rep. 28, 1311–1333 (2011).

Chiang, Y. M., Chang, S. L., Oakley, B. R. & Wang, C. C. Recent advances in awakening silent biosynthetic gene clusters and linking orphan clusters to natural products in microorganisms. Curr. Opin. Chem. Biol. 15, 137–143 (2011).

Scherlach, K. & Hertweck, C. Discovery of aspoquinolones A–D, prenylated quinoline-2-one alkaloids from Aspergillus nidulans, motivated by genome mining. Org. Biomol. Chem. 4, 3517–3520 (2006).

Scherlach, K., Schuemann, J., Dahse, H.-M. & Hertweck, C. Aspernidine A and B, prenylated isoindolinone alkaloids from the model fungus Aspergillus nidulans. J. Antibiot. 63, 375–377 (2010).

Lincke, T., Behnken, S., Ishida, K., Roth, M. & Hertweck, C. Closthioamide: an unprecedented polythioamide antibiotic from the strictly anaerobic bacterium Clostridium cellulolyticum. Angew. Chem. Int. Ed. Engl. 49, 2011–2013 (2010).

Kawai, K., Wang, G., Okamoto, S. & Ochi, K. The rare earth, scandium, causes antibiotic overproduction in Streptomyces spp. FEMS Microbiol. Lett. 274, 311–315 (2007).

Tanaka, Y., Hosaka, T. & Ochi, K. Rare earth elements activate the secondary metabolite-biosynthetic gene clusters in Streptomyces coelicolor A3(2). J. Antibiot. 63, 477–481 (2010).

Seyedsayamdost, M. R. High-throughput platform for the discovery of elicitors of silent bacterial gene clusters. Proc. Natl Acad. Sci. USA 111, 7266–7271 (2014). This study describes a new high-throughput platform for discovering elicitors that activate silent BGCs.

Craney, A., Ozimok, C., Pimentel-Elardo, S. M., Capretta, A. & Nodwell, J. R. Chemical perturbation of secondary metabolism demonstrates important links to primary metabolism. Chem. Biol. 19, 1020–1027 (2012).

Kaeberlein, T., Lewis, K. & Epstein, S. S. Isolating “uncultivable” microorganisms in pure culture in a simulated natural environment. Science 296, 1127–1129 (2002).

Nichols, D. et al. Use of ichip for high-throughput in situ cultivation of “uncultivable” microbial species. Appl. Environ. Microbiol. 76, 2445–2450 (2010).

Gavrish, E. et al. Lassomycin, a ribosomally synthesized cyclic peptide, kills Mycobacterium tuberculosis by targeting the ATP-dependent protease ClpC1P1P2. Chem. Biol. 21, 509–518 (2014).

Ling, L. L. et al. A new antibiotic kills pathogens without detectable resistance. Nature 517, 455–459 (2015). This report details the discovery and characterization of teixobactin, a novel broad-spectrum antibacterial agent for which there is “no detectable resistance”.

Wright, G. Antibiotics: an irresistible newcomer. Nature 517, 442–444 (2015).

Schroeckh, V. et al. Intimate bacterial–fungal interaction triggers biosynthesis of archetypal polyketides in Aspergillus nidulans. Proc. Natl Acad. Sci. USA 106, 14558–14563 (2009).

Sato, S., Morishita, T., Hosoya, T. & Ishikawa, Y. Novel pentacyclic compounds, F-9775A and F-9775B, their manufacture with Paecilomyces carneus, and their use for treatment of osteoporosis. Japanese patent application JP11001480 (1999).

Onaka, H., Mori, Y., Igarashi, Y. & Furumai, T. Mycolic acid-containing bacteria induce natural-product biosynthesis in Streptomyces species. Appl. Environ. Microbiol. 77, 400–406 (2011).

König, C. C. et al. Bacterium induces cryptic meroterpenoid pathway in the pathogenic fungus Aspergillus fumigatus. ChemBioChem 14, 938–942 (2013).

Moree, W. et al. Imaging mass spectrometry of a coral microbe interaction with fungi. J. Chem. Ecol. 39, 1045–1054 (2013).

Moree, W. J. et al. Interkingdom metabolic transformations captured by microbial imaging mass spectrometry. Proc. Natl Acad. Sci. USA 109, 13811–13816 (2012). This study uses MALDI–IMS to directly visualize and identify metabolites produced by microorganisms growing on an agar plate, revealing a complex pattern of metabolite exchange between P. aeruginosa and A. fumigatus.

Medema, M. H. et al. Pep2Path: automated mass spectrometry-guided genome mining of peptidic natural products. PLoS Comp. Biol. 10, e1003822 (2014).

Mohimani, H. et al. NRPquest: coupling mass spectrometry and genome mining for nonribosomal peptide discovery. J. Nat. Prod. 77, 1902–1909 (2014).

Mohimani, H. et al. Automated genome mining of ribosomal peptide natural products. ACS Chem. Biol. 9, 1545–1551 (2014). References 69–71 describe platforms that combine tandem mass spectrometry and bioinformatics to search for ribosomally biosynthesized and post-translationally modified peptides.

Ochi, K. & Hosaka, T. New strategies for drug discovery: activation of silent or weakly expressed microbial gene clusters. Appl. Microbiol. Biotechnol. 97, 87–98 (2013).

Shima, J., Hesketh, A., Okamoto, S., Kawamoto, S. & Ochi, K. Induction of actinorhodin production by rpsL (encoding ribosomal protein S12) mutations that confer streptomycin resistance in Streptomyces lividans and Streptomyces coelicolor A3(2). J. Bacteriol. 178, 7276–7284 (1996).

Bibb, M. J. Regulation of secondary metabolism in streptomycetes. Curr. Opin. Microbiol. 8, 208–215 (2005).

Artsimovitch, I. et al. Structural basis for transcription regulation by alarmone ppGpp. Cell 117, 299–310 (2004).

Srivatsan, A. & Wang, J. D. Control of bacterial transcription, translation and replication by (p)ppGpp. Curr. Opin. Microbiol. 11, 100–105 (2008).

Xu, J., Tozawa, Y., Lai, C., Hayashi, H. & Ochi, K. A rifampicin resistance mutation in the rpoB gene confers ppGpp-independent antibiotic production in Streptomyces coelicolor A3(2). Mol. Genet. Genom. 268, 179–189 (2002).

Hosaka, T. et al. Antibacterial discovery in actinomycetes strains with mutations in RNA polymerase or ribosomal protein S12. Nat. Biotechnol. 27, 462–464 (2009). This article reports the discovery of the piperidamycins, a novel class of antibiotics from S. mauvecolor , using a pleiotropic activation strategy; antibiotics are applied to induce spontaneous mutations in ribosomal proteins and thus induce BGC expression.

Gomez-Escribano, J. P. et al. Structure and biosynthesis of the unusual polyketide alkaloid coelimycin P1, a metabolic product of the cpk gene cluster of Streptomyces coelicolor M145. Chem. Sci. 3, 2716–2720 (2012). This paper describes the discovery of the novel polyketide alkaloid coelimycin P1 in S. coelicolor through a strategy that combines mutation of ribosomal proteins with genetic manipulation to increase expression of the cryptic cpk cluster.

Gottelt, M., Kol, S., Gomez-Escribano, J. P., Bibb, M. & Takano, E. Deletion of a regulatory gene within the cpk gene cluster reveals novel antibacterial activity in Streptomyces coelicolor A3(2). Microbiology 156, 2343–2353 (2010).

Yin, W. & Keller, N. Transcriptional regulatory elements in fungal secondary metabolism. J. Microbiol. 49, 329–339 (2011).

Bayram, Ö. et al. VelB/VeA/LaeA complex coordinates light signal with fungal development and secondary metabolism. Science 320, 1504–1506 (2008).

Bok, J. W. & Keller, N. P. LaeA, a regulator of secondary metabolism in Aspergillus spp. Eukaryot. Cell 3, 527–535 (2004).

Bok, J. W. et al. Genomic mining for Aspergillus natural products. Chem. Biol. 13, 31–37 (2006).

He, J. et al. Cytotoxic and other metabolites of Aspergillus inhabiting the rhizosphere of Sonoran desert plants. J. Nat. Prod. 67, 1985–1991 (2004).

Behnken, S., Lincke, T., Kloss, F., Ishida, K. & Hertweck, C. Antiterminator-mediated unveiling of cryptic polythioamides in an anaerobic bacterium. Angew. Chem. Int. Ed. Engl. 51, 2425–2428 (2012).

Herbert, K. M. et al. E. coli NusG inhibits backtracking and accelerates pause-free transcription by promoting forward translocation of RNA polymerase. J. Mol. Biol. 399, 17–30 (2010).

McKenzie, N. L. et al. Induction of antimicrobial activities in heterologous streptomycetes using alleles of the Streptomyces coelicolor gene absA1. J. Antibiot. 63, 177–182 (2010).

Felsenfeld, G. & Groudine, M. Controlling the double helix. Nature 421, 448–453 (2003).

Brosch, G., Loidl, P. & Graessle, S. Histone modifications and chromatin dynamics: a focus on filamentous fungi. FEMS Microbiol. Rev. 32, 409–439 (2008).

Cichewicz, R. H. Epigenome manipulation as a pathway to new natural product scaffolds and their congeners. Nat. Prod. Rep. 27, 11–22 (2010).

Shwab, E. K. et al. Histone deacetylase activity regulates chemical diversity in Aspergillus. Eukaryot. Cell 6, 1656–1664 (2007).

Bok, J. W. et al. Chromatin-level regulation of biosynthetic gene clusters. Nat. Chem. Biol. 5, 462–464 (2009).

Wu, Y. et al. Emodin-mediated protection from acute myocardial infarction via inhibition of inflammation and apoptosis in local ischemic myocardium. Life Sci. 81, 1332–1338 (2007).

Williams, R. B., Henrikson, J. C., Hoover, A. R., Lee, A. E. & Cichewicz, R. H. Epigenetic remodeling of the fungal secondary metabolome. Org. Biomol. Chem. 6, 1895–1897 (2008).

Henrikson, J. C., Hoover, A. R., Joyner, P. M. & Cichewicz, R. H. A chemical epigenetics approach for engineering the in situ biosynthesis of a cryptic natural product from Aspergillus niger. Org. Biomol. Chem. 7, 435–438 (2009).

Asai, T. et al. Structurally diverse chaetophenol productions induced by chemically mediated epigenetic manipulation of fungal gene expression. Org. Lett. 15, 3346–3349 (2013).

Wang, X. et al. Chemical epigenetics alters the secondary metabolite composition of guttate excreted by an Atlantic-Forest-soil-derived Penicillium citreonigrum. J. Nat. Prod. 73, 942–948 (2010).

Bergmann, S. et al. Genomics-driven discovery of PKS–NRPS hybrid metabolites from Aspergillus nidulans. Nat. Chem. Biol. 3, 213–217 (2007).

Shimizu, T., Kinoshita, H. & Nihira, T. Identification and in vivo functional analysis by gene disruption of ctnA, an activator gene involved in citrinin biosynthesis in Monascus purpureus. Appl. Environ. Microbiol. 73, 5097–5103 (2007).

Chiang, Y. M. et al. A gene cluster containing two fungal polyketide synthases encodes the biosynthetic pathway for a polyketide, asperfuranone, in Aspergillus nidulans. J. Am. Chem. Soc. 131, 2965–2970 (2009).

Duncan, S. J. et al. Isolation and structure elucidation of chlorofusin, a novel p53–MDM2 antagonist from a Fusarium sp. J. Am. Chem. Soc. 123, 554–560 (2001).

Laureti, L. et al. Identification of a bioactive 51-membered macrolide complex by activation of a silent polyketide synthase in Streptomyces ambofaciens. Proc. Natl Acad. Sci. USA 108, 6258–6263 (2011). This article reports that constitutive overexpression of a putative pathway-specific transcriptional activator induces BGC expression, leading to the discovery of the stambomycins, which are potential leads for the development of new anticancer agents.

Corre, C., Song, L., O'Rourke, S., Chater, K. F. & Challis, G. L. 2-alkyl-4-hydroxymethylfuran-3-carboxylic acids, antibiotic production inducers discovered by Streptomyces coelicolor genome mining. Proc. Nat. Acad. Sci. USA 105, 17510–17515 (2008).

Bunet, R. et al. Characterization and manipulation of the pathway-specific late regulator AlpW reveals Streptomyces ambofaciens as a new producer of kinamycins. J. Bacteriol. 193, 1142–1153 (2011).

Sidda, J. D. et al. Discovery of a family of γ-aminobutyrate ureas via rational derepression of a silent bacterial gene cluster. Chem. Sci. 5, 86–89 (2014). This study uses the repressor deletion strategy in S. venezuelae , enabling the discovery of the gaburedins, a novel complex of γ-aminobutyrate-derived ureas.

Biggins, J. B., Gleber, C. D. & Brady, S. F. Acyldepsipeptide HDAC inhibitor production induced in Burkholderia thailandensis. Org. Lett. 13, 1536–1539 (2011).

Ishida, K., Lincke, T., Behnken, S. & Hertweck, C. Induced biosynthesis of cryptic polyketide metabolites in a Burkholderia thailandensis quorum sensing mutant. J. Am. Chem. Soc. 132, 13966–13968 (2010).

Guo, F. et al. Targeted activation of silent natural product biosynthesis pathways by reporter-guided mutant selection. Metab. Eng. 28, 134–142 (2015). This article introduces the concept of reporter-guided mutant selection, which combines pleiotropic mutagenesis with pathway-specific detection to visualize mutants in which transcription of the targeted BGC has been activated.

Franke, J., Ishida, K. & Hertweck, C. Genomics-driven discovery of burkholderic acid, a noncanonical, cryptic polyketide from human pathogenic Burkholderia species. Angew. Chem. Int. Ed. Engl. 51, 11611–11615 (2012).

Olano, C. et al. Activation and identification of five clusters for secondary metabolites in Streptomyces albus J1074. Microb. Biotechnol. 7, 242–256 (2014).

Nakagawa, F. et al. Terferol, an inhibitor of cyclic adenosine-3,5-monophosphate phosphodiesterase. II. Structure elucidation. J. Antibiot. 37, 10–12 (1984).

Biggins, J. B., Liu, X., Feng, Z. & Brady, S. F. Metabolites from the induced expression of cryptic single operons found in the genome of Burkholderia pseudomallei. J. Am. Chem. Soc. 133, 1638–1641 (2011).

Lin, X., Hopson, R. & Cane, D. E. Genome mining in Streptomyces coelicolor: molecular cloning and characterization of a new sesquiterpene synthase. J. Am. Chem. Soc. 128, 6022–6023 (2006).

Chou, W. K. W. et al. Genome mining in Streptomyces avermitilis: cloning and characterization of SAV_76, the synthase for a new sesquiterpene, avermitilol. J. Am. Chem. Soc. 132, 8850–8851 (2010).

McClerren, A. L. et al. Discovery and in vitro biosynthesis of haloduracin, a two-component lantibiotic. Proc. Natl Acad. Sci. USA 103, 17243–17248 (2006).

Jones, A. C. et al. Phage P1-derived artificial chromosomes facilitate heterologous expression of the FK506 gene cluster. PLoS ONE 8, e69319 (2013).

Yamanaka, K. et al. Direct cloning and refactoring of a silent lipopeptide biosynthetic gene cluster yields the antibiotic taromycin A. Proc. Natl Acad. Sci. USA 111, 1957–1962 (2014).

Kim, J. H. et al. Cloning large natural product gene clusters from the environment: piecing environmental DNA gene clusters back together with TAR. Biopolymers 93, 833–844 (2010).

Lazarus, C. M., Williams, K. & Bailey, A. M. Reconstructing fungal natural product biosynthetic pathways. Nat. Prod. Rep. 31, 1339–1347 (2014).

Shao, Z. & Zhao, H. in Current Protocols in Chemical Biology 65–100 (John Wiley & Sons, 2014).

Shao, Z., Zhao, H. & Zhao, H. DNA assembler, an in vivo genetic method for rapid construction of biochemical pathways. Nucleic Acids Res. 37, e16 (2009).

Shao, Z., Luo, Y. & Zhao, H. Rapid characterization and engineering of natural product biosynthetic pathways via DNA assembler. Mol. Biosyst. 7, 1056–1059 (2011).

Luo, Y. et al. Activation and characterization of a cryptic polycyclic tetramate macrolactam biosynthetic gene cluster. Nat. Commun. 4, 2894 (2013). This study uses a “plug-and-play” synthetic biology strategy to elicit activation of a cryptic BGC in S. griseus , which led to the discovery of three new polycyclic tetramate macrolactam natural products.

Smanski, M. J. et al. Functional optimization of gene clusters by combinatorial design and assembly. Nat. Biotechnol. 32, 1241–1249 (2014). This study takes a synthetic biology approach that enables combinatorial DNA assembly and thus facilitates manipulation of large microbial gene clusters, with rapid feedback and evaluation of the resultant synthetic clusters.

Unkles, S. E., Valiante, V., Mattern, Derek, J. & Brakhage, A. A. Synthetic biology tools for bioprospecting of natural products in eukaryotes. Chem. Biol. 21, 502–508 (2014).

Klein, J. et al. Yeast synthetic biology platform generates novel chemical structures as scaffolds for drug discovery. ACS Synthet. Biol. 3, 314–323 (2014). This work reports a synthetic biology strategy for bioengineering, built on the idea that small molecules have co-evolved with their protein targets; it is applied to the production in yeast of a series of 74 novel specialized metabolites.

Krug, D. & Müller, R. Secondary metabolomics: the impact of mass spectrometry-based approaches on the discovery and characterization of microbial natural products. Nat. Prod. Rep. 31, 768–783 (2014).

Bucar, F., Wube, A. & Schmid, M. Natural product isolation — how to get from biological material to pure compounds. Nat. Prod. Rep. 30, 525–545 (2013).

Breton, R. C. & Reynolds, W. F. Using NMR to identify and characterize natural products. Nat. Prod. Rep. 30, 501–524 (2013).

Owen, J. G. et al. Mapping gene clusters within arrayed metagenomic libraries to expand the structural diversity of biomedically relevant natural products. Proc. Natl Acad. Sci. USA 110, 11797–11802 (2013).

Kallifidas, D., Kang, H. S. & Brady, S. F. Tetarimycin A, an MRSA-active antibiotic identified through induced expression of environmental DNA gene clusters. J. Am. Chem. Soc. 134, 19552–19555 (2012).

Chang, F. Y., Ternei, M. A., Calle, P. Y. & Brady, S. F. Discovery and synthetic refactoring of tryptophan dimer gene clusters from the environment. J. Am. Chem. Soc. 135, 17906–17912 (2013).

Jaspars, M. & Challis, G. L. Microbiology: a talented genus. Nature 506, 38–39 (2014).

Payne, D. J., Gwynn, M. N., Holmes, D. J. & Pompliano, D. L. Drugs for bad bugs: confronting the challenges of antibacterial discovery. Nat. Rev. Drug Discov. 6, 29–40 (2007).

Hajduk, P. J. & Greer, J. A decade of fragment-based drug design: strategic advances and lessons learned. Nat. Rev. Drug Discov. 6, 211–219 (2007).

Hertweck, C. The biosynthetic logic of polyketide diversity. Angew. Chem. Int. Ed. Engl. 48, 4688–4716 (2009).

Piel, J. Biosynthesis of polyketides by trans-AT polyketide synthases. Nat. Prod. Rep. 27, 996–1047 (2010).

Arnison, P. G. et al. Ribosomally synthesized and post-translationally modified peptide natural products: overview and recommendations for a universal nomenclature. Nat. Prod. Rep. 30, 108–160 (2013).

Strieker, M., Tanovic, A. & Marahiel, M. A. Nonribosomal peptide synthetases: structures and dynamics. Curr. Opin. Struct. Biol. 20, 234–240 (2010).

Oves-Costales, D., Kadi, N. & Challis, G. L. The long-overlooked enzymology of a nonribosomal-peptide synthetase independent pathway for virulence-conferring siderophore biosynthesis. Chem. Commun. 2009, 6530–6541 (2009).

Gao, Y., Honzatko, R. B. & Peters, R. J. Terpenoid synthase structures: a so far incomplete view of complex catalysis. Nat. Prod. Rep. 29, 1153–1175 (2012).