Discovery of environment-sensitive fluorescent probes for detecting and inhibiting metallo-β-lactamase

Bioorganic Chemistry - Tập 128 - Trang 106048 - 2022
Cheng Chen1,2, Yang Xiang3, Ke-Wu Yang2
1College of Forestry, Northwest A&F University, Yangling, Shaanxi 712100, PR China
2Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi’an 710127, PR China
3College of Physical Education, Yan'an University, Yan'an 716000, PR China

Tài liệu tham khảo

Chen, 2022, Structure and mechanism-guided design of dual serine/metallo- carbapenemase inhibitors, J. Med. Chem., 65, 5954, 10.1021/acs.jmedchem.2c00213 Boyce, 2020, Platform to discover protease-activated antibiotics and application to siderophore-antibiotic conjugates, J. Am. Chem. Soc., 142, 21310, 10.1021/jacs.0c06987 Yan, 2020, Principles and current strategies targeting metallo-β-lactamase mediated antibacterial resistance, Med. Res. Rev., 40, 1558, 10.1002/med.21665 Bush, 2019, Interplay between β-lactamases and new β-lactamase inhibitors, Nat. Rev. Microbiol., 17, 295, 10.1038/s41579-019-0159-8 González-Bello, 2020, β-lactamase inhibitors to restore the efficacy of antibiotics against superbugs, J. Med. Chem., 63, 1859, 10.1021/acs.jmedchem.9b01279 King, 2014, AMA overcomes metallo-β-lactamase antibiotic resistance, Nature, 510, 503, 10.1038/nature13445 Palacios, 2020, Metallo-β-lactamase inhibitors inspired on snapshots from the catalytic mechanism, Biomolecules, 10, 854, 10.3390/biom10060854 Chen, 2020, Structure-based design of covalent inhibitors targeting metallo-β-lactamases, Eur. J. Med. Chem., 203, 10.1016/j.ejmech.2020.112573 Sun, 2020, Resensitizing carbapenem- and colistin-resistant bacteria to antibiotics using auranofin, Nat. Commun., 11, 5263, 10.1038/s41467-020-18939-y Krajnc, 2019, Bicyclic boronate VNRX-5133 inhibits metallo- and serine-β-lactamases, J. Med. Chem., 62, 8544, 10.1021/acs.jmedchem.9b00911 C. López, J. Delmonti, R.A. Bonomo, A.J. Vila, Deciphering the evolution of metallo-β-lactamases: A journey from the test tube to the bacterial periplasm, J. Biol. Chem. 298 (2022) 101665. Ding, 2021, Fluorogenic probes/inhibitors of β-lactamase and their applications in drug-resistant bacteria, Angew. Chem. Int. Ed., 60, 24, 10.1002/anie.202006635 Mehta, 2021, Visualizing the dynamic metalation state of New Delhi Metallo-β-lactamase-1 in bacteria using a reversible fluorescent probe, J. Am. Chem. Soc., 143, 8314, 10.1021/jacs.1c00290 Song, 2017, Intramolecular substitution uncages fluorogenic probes for detection of metallo-carbapenemase-expressing bacteria, Chem. Sci., 8, 7669, 10.1039/C7SC02416A Xie, 2021, A dual-caged resorufin probe for rapid screening of infections resistant to lactam antibiotics, Chem. Sci., 12, 9153, 10.1039/D1SC01471D Cheng, 2018, Rapid and specific labeling of single live Mycobacterium tuberculosis with a dual-targeting fluorogenic probe, Sci. Transl. Med., 10, eaar4470, 10.1126/scitranslmed.aar4470 Xie, 2012, Rapid point-of-care detection of the tuberculosis pathogen using a BlaC-specific fluorogenic probe, Nat. Chem., 4, 802, 10.1038/nchem.1435 Mao, 2017, Detection of carbapenemase-producing organisms with a carbapenem-based fluorogenic probe, Angew. Chem. Int. Ed., 56, 4468, 10.1002/anie.201612495 Mao, 2019, A carbapenem-based off-on fluorescent probe for specific detection of metallo-β-lactamase activities, Chembiochem., 20, 511, 10.1002/cbic.201800126 Ma, 2021, Rapid broad spectrum detection of carbapenemases with a dual fluorogenic-colorimetric probe, J. Am. Chem. Soc., 143, 6886, 10.1021/jacs.1c00462 Mehta, 2021, Visualizing the dynamic metalation state of New Delhi Metallo-βlactamase-1 in bacteria using a reversible fluorescent probe, J. Am. Chem. Soc., 143, 8314, 10.1021/jacs.1c00290 Chiou, 2015, Ebselen as a potent covalent inhibitor of New Delhi metallo-β-lactamase (NDM-1), Chem. Commun., 51, 9543, 10.1039/C5CC02594J Chen, 2019, The assemblage of covalent and metal binding dual functional scaffold for cross-class metallo-β-lactamases inhibition, Future Med. Chem., 11, 2381, 10.4155/fmc-2019-0008 Liu, 2020, meta-Substituted benzenesulfonamide: a potent scaffold for the development of metallo-β-lactamase ImiS inhibitors, RSC Med. Chem., 11, 259, 10.1039/C9MD00455F Chang, 2017, Carbamylmethyl mercaptoacetate thioether: a novel scaffold for the development of L1 metallo-β-lactamase inhibitors, ACS Med. Chem. Let., 8, 527, 10.1021/acsmedchemlett.7b00058 Zhang, 2018, Real-time monitoring of NDM-1 activity in live bacterial cells by isothermal titration calorimetry: a new approach to measure inhibition of antibiotic-resistant bacteria, ACS Infect. Dis., 4, 1671, 10.1021/acsinfecdis.8b00147 Chen, 2018, Mercaptoacetate thioesters and their hydrolysate mercaptoacetic acids jointly inhibit metallo-β-lactamase L1, Med. Chem. Commun., 9, 1172, 10.1039/C8MD00091C Wang, 2019, Structure-based development of (1-(3'-Mercaptopropanamido)methyl)boronic acid derived broad-spectrum, dual-action inhibitors of metallo- and serine-β-lactamases, J. Med. Chem., 62, 7160, 10.1021/acs.jmedchem.9b00735 Xiang, 2018, Rhodanine as a potent scaffold for the development of broad-spectrum metallo-β-lactamase inhibitors, ACS Med. Chem. Let., 9, 359, 10.1021/acsmedchemlett.7b00548 Liu, 2016, Environment-sensitive fluorescent probe for the human ether-a-go-go-related gene potassium channel, Anal. Chem., 88, 1511, 10.1021/acs.analchem.5b04220 Liu, 2017, Discovery of a turn-on fluorescent probe for myeloid cell leukemia-1 protein, Anal. Chem., 89, 11173, 10.1021/acs.analchem.7b01148 Liu, 2019, Discovery of Turn-On Fluorescent Probes for Detecting Bcl-2 Protein, Anal. Chem., 91, 5722, 10.1021/acs.analchem.8b05853 Wu, 2021, A theranostic probe of indoleamine 2,3-dioxygenase 1 (IDO1) for small molecule cancer immunotherapy, Eur. J. Med. Chem., 213, 10.1016/j.ejmech.2021.113163 Chen, 2018, A protein structure-guided covalent scaffold selectively targets the B1 and B2 subclass metallo-β-lactamases, Chem. Commun., 54, 4802, 10.1039/C8CC01067F Bianco, 2016, Covalent docking using autodock: Two-point attractor and flexible side chain methods, Protein Sci., 25, 295, 10.1002/pro.2733 Chen, 2020, Disulfiram as a potent metallo-β-lactamase inhibitor with dual functional mechanisms, Chem. Commun., 56, 2755, 10.1039/C9CC09074F Lomovskaya, 2020, Biochemical characterization of QPX7728, a new ultrabroad-spectrum beta-lactamase inhibitor of serine and metallo-β-lactamases, Antimicrob. Agents Chemother., 64, e00130, 10.1128/AAC.00552-20 Chen, 2020, Ruthenium complexes as prospective inhibitors of metallo-β-lactamases to reverse carbapenem resistance, Dalton Trans., 49, 14099, 10.1039/D0DT02430A Chen, 2019, Ebselen bearing polar functionality: Identification of potent antibacterial agents against multidrug-resistant Gram-negative bacteria, Bioorg. Chem., 93, 10.1016/j.bioorg.2019.103286 Macegoniuk, 2016, 1,2-Benzisoselenazol-3(2H)-one derivatives as a new class of bacterial urease inhibitors, J. Med. Chem., 59, 8125, 10.1021/acs.jmedchem.6b00986