Discovery of Widespread GTP-Binding Motifs in Genomic DNA and RNA
Tài liệu tham khảo
Alberts, 2007
Bagga, 1995, The G-rich auxiliary downstream element has distinct sequence and position requirements and mediates efficient 3′ end pre-mRNA processing through a trans-acting factor, Nucleic Acids Res., 23, 1625, 10.1093/nar/23.9.1625
Barrick, 2004, New RNA motifs suggest an expanded scope for riboswitches in bacterial genetic control, Proc. Natl. Acad. Sci. USA, 101, 6421, 10.1073/pnas.0308014101
Bartel, 2009, MicroRNAs: target recognition and regulatory functions, Cell, 136, 215, 10.1016/j.cell.2009.01.002
Blackburn, 2001, Switching and signaling at the telomere, Cell, 106, 661, 10.1016/S0092-8674(01)00492-5
Borgognone, 2010, Cellular nucleic-acid-binding protein, a transcriptional enhancer of c-Myc, promotes the formation of parallel G-quadruplexes, Biochem. J., 428, 491, 10.1042/BJ20100038
Bugaut, 2012, 5′-UTR RNA G-quadruplexes: translation regulation and targeting, Nucleic Acids Res., 40, 4727, 10.1093/nar/gks068
Calcaterra, 2010, CNBP: a multifunctional nucleic acid chaperone involved in cell death and proliferation control, IUBMB Life, 62, 707, 10.1002/iub.379
Cech, 1990, Nobel lecture. Self-splicing and enzymatic activity of an intervening sequence RNA from Tetrahymena, Biosci. Rep., 10, 239, 10.1007/BF01117241
Chen, 1992, Sr2+ facilitates intermolecular G-quadruplex formation of telomeric sequences, Biochemistry, 31, 3769, 10.1021/bi00130a006
Connell, 1994, RNAs with dual specificity and dual RNAs with similar specificity, Science, 264, 1137, 10.1126/science.7513905
Davis, 2004, G-quartets 40 years later: from 5′-GMP to molecular biology and supramolecular chemistry, Angew. Chem. Int. Ed. Engl., 43, 668, 10.1002/anie.200300589
Dever, 1989
Finch, 1993, Nucleolar localization of nucleophosmin/B23 requires GTP, J. Biol. Chem., 268, 5823, 10.1016/S0021-9258(18)53393-7
Franklin, 1977, Reduction in beta-adrenergic response of cultured glioma cells following depletion of intracellular GTP, Eur. J. Biochem., 77, 113, 10.1111/j.1432-1033.1977.tb11648.x
Fry, 2007, Tetraplex DNA and its interacting proteins, Front. Biosci., 12, 4336, 10.2741/2391
Gellert, 1962, Helix formation by guanylic acid, Proc. Natl. Acad. Sci. USA, 48, 2013, 10.1073/pnas.48.12.2013
Gold, 1997, From oligonucleotide shapes to genomic SELEX: novel biological regulatory loops, Proc. Natl. Acad. Sci. USA, 94, 59, 10.1073/pnas.94.1.59
Halder, 2009, Predictable suppression of gene expression by 5′-UTR-based RNA quadruplexes, Nucleic Acids Res., 37, 6811, 10.1093/nar/gkp696
Huppert, 2005, Prevalence of quadruplexes in the human genome, Nucleic Acids Res., 33, 2908, 10.1093/nar/gki609
Huppert, 2007, G-quadruplexes in promoters throughout the human genome, Nucleic Acids Res., 35, 406, 10.1093/nar/gkl1057
Hüttenhofer, 2005, Non-coding RNAs: hope or hype?, Trends Genet., 21, 289, 10.1016/j.tig.2005.03.007
Kendrick, 2010, The role of G-quadruplex/i-motif secondary structures as cis-acting regulatory elements, Pure Appl. Chem., 82, 1609, 10.1351/PAC-CON-09-09-29
Koç, 2004, Hydroxyurea arrests DNA replication by a mechanism that preserves basal dNTP pools, J. Biol. Chem., 279, 223, 10.1074/jbc.M303952200
Kostadinov, 2006, GRSDB: a database of quadruplex forming G-rich sequences in alternatively processed mammalian pre-mRNA sequences, Nucleic Acids Res., 34, D119, 10.1093/nar/gkj073
Kumari, 2008, Position and stability are determining factors for translation repression by an RNA G-quadruplex-forming sequence within the 5′ UTR of the NRAS proto-oncogene, Biochemistry, 47, 12664, 10.1021/bi8010797
Kypr, 2009, Circular dichroism and conformational polymorphism of DNA, Nucleic Acids Res., 37, 1713, 10.1093/nar/gkp026
Laserson, 2005, Predicting candidate genomic sequences that correspond to synthetic functional RNA motifs, Nucleic Acids Res., 33, 6057, 10.1093/nar/gki911
Michelotti, 1995, Cellular nucleic acid binding protein regulates the CT element of the human c-myc protooncogene, J. Biol. Chem., 270, 9494, 10.1074/jbc.270.16.9494
Moran, 1993, Binding of guanosine and 3′ splice site analogues to a group I ribozyme: interactions with functional groups of guanosine and with additional nucleotides, Biochemistry, 32, 5247, 10.1021/bi00070a037
Morris, 2010, An RNA G-quadruplex is essential for cap-independent translation initiation in human VEGF IRES, J. Am. Chem. Soc., 132, 17831, 10.1021/ja106287x
Nielsen, 2011, The transcriptional landscape, Methods Mol. Biol., 703, 3, 10.1007/978-1-59745-248-9_1
Oh, 2005, Transcriptome analysis of human gastric cancer, Mamm. Genome, 16, 942, 10.1007/s00335-005-0075-2
Pedroso, 2007, Induction of parallel human telomeric G-quadruplex structures by Sr(2+), Biochem. Biophys. Res. Commun., 358, 298, 10.1016/j.bbrc.2007.04.126
Pyle, 2002, Metal ions in the structure and function of RNA, J. Biol. Inorg. Chem., 7, 679, 10.1007/s00775-002-0387-6
Rajavashisth, 1989, Identification of a zinc finger protein that binds to the sterol regulatory element, Science, 245, 640, 10.1126/science.2562787
Salehi-Ashtiani, 2006, A genomewide search for ribozymes reveals an HDV-like sequence in the human CPEB3 gene, Science, 313, 1788, 10.1126/science.1129308
Sassanfar, 1993, An RNA motif that binds ATP, Nature, 364, 550, 10.1038/364550a0
Seenisamy, 2004, The dynamic character of the G-quadruplex element in the c-MYC promoter and modification by TMPyP4, J. Am. Chem. Soc., 126, 8702, 10.1021/ja040022b
Shu, 2003, A viral RNA that binds ATP and contains a motif similar to an ATP-binding aptamer from SELEX, J. Biol. Chem., 278, 7119, 10.1074/jbc.M209895200
Siddiqui-Jain, 2002, Direct evidence for a G-quadruplex in a promoter region and its targeting with a small molecule to repress c-MYC transcription, Proc. Natl. Acad. Sci. USA, 99, 11593, 10.1073/pnas.182256799
Smirnov, 2000, Lead is unusually effective in sequence-specific folding of DNA, J. Mol. Biol., 296, 1, 10.1006/jmbi.1999.3441
Teixeira, 2004, Autocatalytic RNA cleavage in the human beta-globin pre-mRNA promotes transcription termination, Nature, 432, 526, 10.1038/nature03032
Todd, 2005, Highly prevalent putative quadruplex sequence motifs in human DNA, Nucleic Acids Res., 33, 2901, 10.1093/nar/gki553
Tucker, 2005, Riboswitches as versatile gene control elements, Curr. Opin. Struct. Biol., 15, 342, 10.1016/j.sbi.2005.05.003
Vu, 2012, Convergent evolution of adenosine aptamers spanning bacterial, human, and random sequences revealed by structure-based bioinformatics and genomic SELEX, Chem. Biol., 19, 1247, 10.1016/j.chembiol.2012.08.010
Watson, 2012, The ydaO motif is an ATP-sensing riboswitch in Bacillus subtilis, Nat. Chem. Biol., 8, 963, 10.1038/nchembio.1095
Wei, 2008, Structural transition from the random coil to quadruplex of AG(3)(T(2)AG(3))(3) induced by Zn(2+), Biophys. Chem., 132, 110, 10.1016/j.bpc.2007.10.013
Winkler, 2002, Thiamine derivatives bind messenger RNAs directly to regulate bacterial gene expression, Nature, 419, 952, 10.1038/nature01145
Woodland, 1972, Determination of the nucleoside triphosphate contents of eggs and oocytes of Xenopus laevis, Biochem. J., 127, 597, 10.1042/bj1270597
Zhang, 2010, Ribozymes and riboswitches: modulation of RNA function by small molecules, Biochemistry, 49, 9123, 10.1021/bi1012645
Zimmermann, 2010, Genomic SELEX: a discovery tool for genomic aptamers, Methods, 52, 125, 10.1016/j.ymeth.2010.06.004