Discovering spatiotemporal usage patterns of a bike-sharing system by type of pass: a case study from Seoul
Springer Science and Business Media LLC - Trang 1-35 - 2023
Tóm tắt
Determining bike-sharing usage patterns and their explanatory factors on demand is essential for the effective and efficient operation of bike-sharing systems (BSSs). Most BSSs provide different passes that vary with the period of use. However, studies investigating the differences in usage patterns are rare compared to studies conducted at the system level, even though explanatory factors depending on the type of pass may cause different characteristics in terms of usage patterns. This study explores the differences in the usage patterns of BSSs and the impact of explanatory factors on the demand depending on the type of pass. Various machine learning techniques, including clustering, regression, and classification, are used, in addition to basic statistical analysis. As observed, long-term season passes of over six months are mainly used for transportation (especially commuting), whereas one-day or short-term season passes seem to be used more for leisure than for other purposes. Furthermore, differences in the purpose of bike rentals seem to cause differences in usage patterns and variations in demand over time and space. This study improves ther understanding of the usage patterns that appear differently for each pass type, and provides insights into the efficient operation of BSSs in urban areas.
Tài liệu tham khảo
Abasahl, F., Kelarestaghi, K.B., Ermagun, A.: Gender gap generators for bicycle mode choice in Baltimore college campuses. Travel Behav. Soc. 11, 78–85 (2018). https://doi.org/10.1016/j.tbs.2018.01.002
Ahillen, M., Mateo-Babiano, D., Corcoran, J.: Dynamics of bike sharing in Washington, DC and Brisbane, Australia: implications for policy and planning. Int. J. Sust. Transp. 10(5), 441–454 (2016). https://doi.org/10.1080/15568318.2014.966933
Aldred, R., Woodcock, J., Goodman, A.: Does more cycling mean more diversity in cycling? Transp. Rev. 36(1), 28–44 (2016). https://doi.org/10.1080/01441647.2015.1014451
Alsger, A., Tavassoli, A., Mesbah, M., Ferreira, L., Hickman, M.: Public transport trip purpose inference using smart card fare data. Transp. Res. Part C Emerg. Technol. 87, 123–137 (2018). https://doi.org/10.1016/j.trc.2017.12.016
Bao, J., Xu, C., Liu, P., Wang, W.: Exploring Bikesharing travel patterns and trip purposes using smart card data and online point of interests. Netw. Spat. Econ. 17(4), 1231–1253 (2017). https://doi.org/10.1007/s11067-017-9366-x
Bao, J., Shi, X., Zhang, H.: Spatial analysis of bikeshare ridership with smart card and POI data using geographically weighted regression method. IEEE Access 6, 76049–76059 (2018). https://doi.org/10.1109/ACCESS.2018.2883462
Böcker, L., Anderson, E., Uteng, T.P., Throndsen, T.: Bike sharing use in conjunction to public transport: exploring spatiotemporal, age and gender dimensions in Oslo, Norway. Transp. Res. Part A Policy Pract. 13, 389–401 (2020). https://doi.org/10.1016/j.tra.2020.06.009
Bordagaray, M., Ibeas, A., Dell’Olio, L.: Modeling user perception of public bicycle services. Proc. Soc. Behav. Sci. 54, 1308–1316 (2012). https://doi.org/10.1016/j.sbspro.2012.09.845
Buck, D., Buehler, R., Happ, P., Rawls, B., Chung, P., Borecki, N.: Are bikeshare users different from regular cyclists?: a first look at short-term users, annual members, and area cyclists in the Washington, D.C. Region. Transp. Res. Record 2387(1), 112–119 (2013). https://doi.org/10.3141/2387-13
Chang, X., Wu, J., He, Z., Li, D., Sun, H., Wang, W.: Understanding user’s travel behavior and city region functions from station-free shared bike usage data. Transp. Res. F Traffic Psychol. Behav. 72, 81–95 (2020). https://doi.org/10.1016/j.trf.2020.03.018
Dormann, C.F., McPherson, J.M., Araujo, M.B., Bivand, R., Bolliger, J., Carl, G., Kuhn, I.: Ohlemu ller R, Peres-Neto PR, Reineking B, Schro der B, Schurr FM, Wilson R Methods to account for spatial autocorrelation in the analysis of species distributional data: A review. Ecography 30(5), 609–628 (2007). https://doi.org/10.1111/j.2007.0906-7590.05171.x
El-Assi, W., Mahmoud, M.S., Habib, K.N., Salah Mahmoud, M., Nurul Habib, K.: Effects of built environment and weather on bike sharing demand: a station level analysis of commercial bike sharing in Toronto. Transportation 44(3), 589–613 (2017). https://doi.org/10.1007/s11116-015-9669-z
Eren, E., Uz, V.E.: A review on bike-sharing: the factors affecting bike-sharing demand. Sust. Cities Soc. 54, 101882 (2020). https://doi.org/10.1016/j.scs.2019.101882
Etienne, C., Latifa, O., Ome, C., Latifa, O.: Model-based count series clustering for bike sharing system usage mining : a case study with the Vélib system of Paris. ACM Trans. Intell. Syst. Technol. 5(3), 1–21 (2014). https://doi.org/10.1145/2560188
Faghih-Imani, A., Eluru, N.: Incorporating the impact of spatio-temporal interactions on bicycle sharing system demand: a case study of New York CitiBike system. J. Transp. Geogr. 54, 218–227 (2016). https://doi.org/10.1016/j.jtrangeo.2016.06.008
Faghih-Imani, A., Eluru, N., El-Geneidy, A.M., Rabbat, M., Haq, U.: How land-use and urban form impact bicycle flows: evidence from the bicycle-sharing system (BIXI) in Montreal. J. Transp. Geogr. 41, 306–314 (2014). https://doi.org/10.1016/j.jtrangeo.2014.01.013
Faghih-Imani, A., Hampshire, R., Marla, L., Eluru, N.: An empirical analysis of bike sharing usage and rebalancing: evidence from Barcelona and Seville. Transp. Res. Part A Policy Pract. 97, 177–191 (2017). https://doi.org/10.1016/j.tra.2016.12.007
Fishman, E., Washington, S., Haworth, N.: Bike share: a synthesis of the literature. Transp. Rev. 33(2), 148–165 (2013)
Fishman, E., Washington, S., Haworth, N., Watson, A.: Factors influencing bike share membership: an analysis of Melbourne and Brisbane. Transp. Res. Part A Policy Pract. 71, 17–30 (2015). https://doi.org/10.1016/j.tra.2014.10.021
Garrard, J., Rose, G., Lo, S.K.: Promoting transportation cycling for women: the role of bicycle infrastructure. Prev. Med. 46(1), 55–59 (2008). https://doi.org/10.1016/j.ypmed.2007.07.010
Gebhart, K., Noland, R.B.: The impact of weather conditions on bikeshare trips in Washington DC. Transportation 41(6), 1205–1225 (2014). https://doi.org/10.1007/s11116-014-9540-7
Gong, L., Liu, X., Wu, L., Liu, Y.: Inferring trip purposes and uncovering travel patterns from taxi trajectory data. Cartogr. Geogr. Inf. Sci. 43(2), 103–114 (2016). https://doi.org/10.1080/15230406.2015.1014424
Guidon, S., Becker, H., Dediu, H., Axhausen, K.W.: Electric bicycle-sharing: a new competitor in the urban transportation market? An empirical analysis of transaction data. Transp. Res. Rec. 2673(4), 15–26 (2019). https://doi.org/10.1177/0361198119836762
Guidon, S., Reck, D.J., Axhausen, K.: Expanding a(n) (electric) bicycle-sharing system to a new city: prediction of demand with spatial regression and random forests. J. Transp. Geogr. 84, 102692 (2020). https://doi.org/10.1016/j.jtrangeo.2020.102692
Guo, Y., Zhou, J., Wu, Y., Li, Z.: Identifying the factors affecting bike-sharing usage and degree of satisfaction in Ningbo China. PLOS ONE 12(9), e0185100 (2017). https://doi.org/10.1371/JOURNAL.PONE.0185100
Hatzopoulou, M., Weichenthal, S., Dugum, H., Pickett, G., Miranda-Moreno, L., Kulka, R., Andersen, R., Goldberg, M.: The impact of traffic volume, composition, and road geometry on personal air pollution exposures among cyclists in Montreal, Canada. J. Expo. Sci. Environ. Epidemiol. 23(1), 46–51 (2013)
Heesch, K.C., Sahlqvist, S., Garrard, J.: Gender differences in recreational and transport cycling: a cross-sectional mixed-methods comparison of cycling patterns, motivators, and constraints. Int. J. Behav. Nutr. Phys. Act. 9(1), 106 (2012). https://doi.org/10.1186/1479-5868-9-106
Heinen, E., van Wee, B., Maat, K.: Commuting by bicycle: an overview of the literature. Transp. Rev. 30(1), 59–96 (2010). https://doi.org/10.1080/01441640903187001
Hu, S., Xiong, C., Liu, Z., Zhang, L.: Examining spatiotemporal changing patterns of bike-sharing usage during COVID-19 pandemic. J. Transp. Geogr. 91, 102997 (2021). https://doi.org/10.1016/j.jtrangeo.2021.102997
Hulot, P., Aloise, D., Jena, S.D.: Towards station-level demand prediction for effective rebalancing in bike-sharing systems. In: Proceedings of the ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (pp 378–386). (2018) https://doi.org/10.1145/3219819.3219873
Kaplan, S., Manca, F., Nielsen, T.A.S., Prato, C.G.: Intentions to use bike-sharing for holiday cycling: an application of the Theory of Planned Behavior. Tourism Manag. 47, 34–46 (2015). https://doi.org/10.1016/j.tourman.2014.08.017
Kaviti, S., Venigalla, M.M., Lucas, K.: Travel behavior and price preferences of bikesharing members and casual users: a capital bikeshare perspective. Travel Behav. Soc. 15, 133–145 (2019). https://doi.org/10.1016/j.tbs.2019.02.004
Kim, K.: Spatial Contiguity-Constrained Hierarchical Clustering for Traffic Prediction in Bike Sharing Systems. In: IEEE Transactions on Intelligent Transportation Systems. pp 1–11 (2021). https://doi.org/10.1109/TITS.2021.3057596
Kim, K.: Investigation on the effects of weather and calendar events on bike-sharing according to the trip patterns of bike rentals of stations. J. Transp. Geogr. 66, 309–320 (2018). https://doi.org/10.1016/j.jtrangeo.2018.01.001
Klassen, J., El-Basyouny, K., Islam, M.T.: Analyzing the severity of bicycle-motor vehicle collision using spatial mixed logit models: a City of Edmonton case study. Saf. Sci. 62, 295–304 (2014). https://doi.org/10.1016/j.ssci.2013.09.007
Kong, H., Jin, S.T., Sui, D.Z.: Deciphering the relationship between bikesharing and public transit: modal substitution, integration, and complementation. Transp. Res. Part D: Transp. Environ. 85(June), 102392 (2020). https://doi.org/10.1016/j.trd.2020.102392
Kutela, B., Langa, N., Mwende, S., Kidando, E., Kitali, A.E., Bansal, P.: A text mining approach to elicit public perception of bike-sharing systems. Travel Behav. Soc. 24, 113–123 (2021). https://doi.org/10.1016/j.tbs.2021.03.002
Lee, S.G., Hickman, M.: Trip purpose inference using automated fare collection data. Public Transp. 6(1), 1–20 (2014). https://doi.org/10.1007/s12469-013-0077-5
Li, Y., Zheng, Y., Zhang, H., Chen, L.: Traffic prediction in a bike-sharing system. In: Proceedings of the 23rd SIGSPATIAL International Conference on Advances in Geographic Information Systems - GIS ’15, ACM Press, New York, New York, USA, (pp 1–10), (2015). https://doi.org/10.1145/2820783.2820837
Li, Y., Zheng, Y.: Citywide bike usage prediction in a bike-sharing system. IEEE Trans. Knowl. Data Eng. 32(6), 1079–1091 (2019). https://doi.org/10.1109/tkde.2019.2898831
Li, X., Zhang, Y., Sun, L., Liu, Q.: Free-floating bike sharing in Jiangsu: users’ behaviors and influencing factors. Energies (2018). https://doi.org/10.3390/en11071664
Lin, L., He, Z., Peeta, S.: Predicting station-level hourly demand in a large-scale bike-sharing network: a graph convolutional neural network approach. Transp. Res. Part C Emerg. Technol. 97, 258–276 (2018). https://doi.org/10.1016/j.trc.2018.10.011
Liu, J., Sun, L., Chen, W., Xiong, H.: Rebalancing Bike Sharing Systems. In: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining - KDD ’16. (pp 1005–1014), (2016). https://doi.org/10.1145/2939672.2939776
Long, Y., Thill, J.C.: Combining smart card data and household travel survey to analyze jobs-housing relationships in Beijing. Comput. Environ. Urban Syst. 53, 19–35 (2015). https://doi.org/10.1016/j.compenvurbsys.2015.02.005
Ma, X., Liu, C., Wen, H., Wang, Y., Wu, Y.J.: Understanding commuting patterns using transit smart card data. J. Transp. Geogr. 58, 135–145 (2017). https://doi.org/10.1016/j.jtrangeo.2016.12.001
Ma, X., Ji, Y., Yang, M., Jin, Y., Tan, X.: Understanding bikeshare mode as a feeder to metro by isolating metro-bikeshare transfers from smart card data. Transp. Policy 71(August), 57–69 (2018). https://doi.org/10.1016/j.tranpol.2018.07.008
Maurer, L.K.: Feasibility study for a bicycle sharing program in Sacramento, California. Tech. rep. (2012)
Médard de Chardon, Cyrille, Caruso, Geoffrey, Thomas, Isabelle: Bike-share rebalancing strategies, patterns, and purpose. J. Transp. Geogr. 55, 22–39 (2016). https://doi.org/10.1016/j.jtrangeo.2016.07.003
Meddin, R., DeMaio, P.: The bike-sharing world map. URL: http://www.metrobike net (2021)
Nieuwenhuijsen, M.J., Rojas-Rueda, D.: Chapter ten - Bike-sharing systems and health. In: Nieuwenhuijsen, M.J., Khreis, H. (eds.) Advances in Transportation and Health, pp 239–250. Elsevier, Heidelberg (2020). https://doi.org/10.1016/B978-0-12-819136-1.00010-3
Otero, I., Nieuwenhuijsen, M.J., Rojas-Rueda, D.: Health impacts of bike sharing systems in Europe. Environ. Int. 115, 387–394 (2018). https://doi.org/10.1016/j.envint.2018.04.014
Pellicer-Chenoll, M., Pans, M., Seifert, R., López-Cañada, E., García-Massó, X., Devís-Devís, J., González, L.M.: Gender differences in bicycle sharing system usage in the city of Valencia. Sust. Cities Soc. 65, 102556 (2021). https://doi.org/10.1016/j.scs.2020.102556
Raux, C., Zoubir, A., Geyik, M.: Who are bike sharing schemes members and do they travel differently? The case of Lyon’s “Velo’v’’ scheme. Transp. Res. Part A Policy Pract. 106(August), 350–363 (2017). https://doi.org/10.1016/j.tra.2017.10.010
Razzaque, M.A., Clarke. S.: Smart management of next generation bike sharing systems using Internet of Things. In: 2015 IEEE First International Smart Cities Conference (ISC2), (pp 1–8), (2015). https://doi.org/10.1109/ISC2.2015.7366219
Rixey, R.: Station-level forecasting of bikesharing ridership. Transp. Res. Rec. J. Transp. Res. Board 2387(2387), 46–55 (2013). https://doi.org/10.3141/2387-06
Schuijbroek, J., Hampshire, R.C., van Hoeve, W.J.: Inventory rebalancing and vehicle routing in bike sharing systems. Eur. J. Oper. Res. 257(3), 992–1004 (2017). https://doi.org/10.1016/j.ejor.2016.08.029
Shaheen, S.A., Martin, E.W., Cohen, A.P., Finson, R.S.: Public Bikesharing In North America: Early Operator and User Understanding. Mineta Transportation Institute, San Jose (2012)
Shen, Y., Zhang, X., Zhao, J.: Understanding the usage of dockless bike sharing in Singapore. Int. J. Sust. Transp. 12(9), 686–700 (2018). https://doi.org/10.1080/15568318.2018.1429696
Singla, A., Santoni, M., Bartok, G., Mukerji, P., Meenen, M., Krause, A.: (2015) Incentivizing Users for Balancing Bike Sharing Systems. In: Proceedings of the Twenty-Ninth AAAI Conference on Artificial Intelligence Pattern. (pp 723–729) (June 2014)
Wang, K., Akar, G.: Gender gap generators for bike share ridership: evidence from Citi Bike system in New York City. J. Transp. Geogr. 76, 1–9 (2019). https://doi.org/10.1016/j.jtrangeo.2019.02.003
Wang, M., Zhou, X.: Bike-sharing systems and congestion: evidence from US cities. J. Transp. Geogr. 65, 147–154 (2017). https://doi.org/10.1016/j.jtrangeo.2017.10.022
Wang, K., Akar, G., Chen, Y.J.: Bike sharing differences among Millennials, Gen Xers, and Baby Boomers: lessons learnt from New York City’s bike share. Transp. Res. Part A Policy Pract. 116, 1–14 (2018). https://doi.org/10.1016/j.tra.2018.06.001
Wu, C., Kim, I., Chung, H.: The effects of built environment spatial variation on bike-sharing usage: a case study of Suzhou China. Cities 110, 103063 (2021). https://doi.org/10.1016/j.cities.2020.103063
Xing, Y., Wang, K., Lu, J.J.: Exploring travel patterns and trip purposes of dockless bike-sharing by analyzing massive bike-sharing data in Shanghai China. J. Transp. Geogr. 87, 102787 (2020). https://doi.org/10.1016/j.jtrangeo.2020.102787
Xu, Y., Chen, D., Zhang, X., Tu, W., Chen, Y., Shen, Y., Ratti, C.: Unravel the landscape and pulses of cycling activities from a dockless bike-sharing system. Comput. Environ. Urban Syst. 75, 184–203 (2019). https://doi.org/10.1016/j.compenvurbsys.2019.02.002
Yang, Z., Hu, J., Shu, Y., Cheng, P., Chen, J., Moscibroda, T.: Mobility Modeling and Prediction in Bike-Sharing Systems. In: Proceedings of the 14th Annual International Conference on Mobile Systems, Applications, and Services - MobiSys ’16, (pp 165–178), (2016). https://doi.org/10.1145/2906388.2906408
Yang, H., Zhang, Y., Zhong, L., Zhang, X., Ling, Z.: Exploring spatial variation of bike sharing trip production and attraction: a study based on Chicago’s Divvy system. Appl. Geogr. 115, 102130 (2020). https://doi.org/10.1016/j.apgeog.2019.102130
Zhang, Y., Mi, Z.: Environmental benefits of bike sharing: a big data-based analysis. Appl. Energy 220, 296–301 (2018). https://doi.org/10.1016/j.apenergy.2018.03.101
Zhang, Y., Thomas, T., Brussel, M., van Maarseveen, M.: Exploring the impact of built environment factors on the use of public bikes at bike stations: case study in Zhongshan, China. J. Transp. Geogr. 58, 59–70 (2017). https://doi.org/10.1016/j.jtrangeo.2016.11.014
Zhao, J., Wang, J., Deng, W.: Exploring bikesharing travel time and trip chain by gender and day of the week. Transp. Res. Part C Emerg. Technol. 58, 251–264 (2015). https://doi.org/10.1016/j.trc.2015.01.030
Zhou, X.: Understanding spatiotemporal patterns of biking behavior by analyzing massive bike sharing data in Chicago. PLoS ONE 10(10), 1–20 (2015). https://doi.org/10.1371/journal.pone.0137922
Zi, W., Xiong, W., Chen, H., Chen, L.: TAGCN: station-level demand prediction for bike-sharing system via a temporal attention graph convolution network. Inform. Sci. 561, 274–285 (2021). https://doi.org/10.1016/j.ins.2021.01.065