Khám Phá Các Giải Pháp Quang Học Đầy Đủ Mới Cho Phương Trình Schrödinger Phi Tuyến Resonant Sử Dụng Kỹ Thuật Phân Tích

Md Nur Hossain1,2, M. Mamun Miah3,4, Abdul Hamid Ganie5, M. S. Osman6,7, Wen-Xiu Ma8,9,10,11
1Department of Civil Engineering, Graduate School of Engineering, Osaka University, Suita, Japan
2Department of Mathematics, Dhaka University of Engineering and Technology, Gazipur, Bangladesh
3Division of Mathematical and Physical Sciences, Kanazawa University, Kanazawa, Japan
4Department of Mathematics, Khulna University of Engineering and Technology, Khulna, Bangladesh
5Department of Basic Science, College of Science and Theoretical Studies Saudi Electronic University, Riyadh, Saudi Arabia
6Mathematics Department, Faculty of Sciences, Umm AI-Qura University, Makkah, Saudi Arabia
7Department of Mathematics, Faculty of Science, Cairo University, Giza, Egypt
8Department of Mathematics, Zhejiang Normal University, Jinhua, China
9Department of Mathematics, King Abdulaziz University, Jeddah, Saudi Arabia
10Department of Mathematics and Statistics, University of South Florida, Tampa, USA
11Material Science Innovation and Modelling, North-West University, Potchefstroom, South Africa

Tóm tắt

Trong cuộc khám phá của chúng tôi về vật lý quang học, phương trình Schrödinger phi tuyến resonant phức tạp (NLS) với mức độ phi tuyến theo quy luật đối với hai hàm mũ được nghiên cứu, đây là một phương trình có tầm quan trọng hàng đầu trong lĩnh vực quang học. Phương trình này mở ra cánh cửa khám phá những phức tạp của hiện tượng quang học, bao gồm soliton, các hiệu ứng phi tuyến và sự tương tác của sóng. Nhiều giải pháp quang học bao gồm đa dạng các biểu thức toán học, từ các hàm lượng giác và hyperbol đến các hàm hợp lý, được tiết lộ bằng cách áp dụng kỹ thuật phân tích mở rộng mạnh mẽ ($\dot{G}/G$, $1/G$) - đây là mục tiêu chính của nghiên cứu này. Độ chính xác và độ tin cậy cao nhất của những phát hiện của chúng tôi được xác nhận một cách nghiêm ngặt thông qua phần mềm Mathematica mạnh mẽ. Hơn nữa, các thể hiện hình động động như biểu đồ 2D, 3D và biểu đồ đường viền được trình bày để mô tả sinh động các mẫu quang học khác nhau như hiện tượng tuần hoàn đơn, tuần hoàn đa, soliton đặc trưng và hình dáng bán chuông. Những giải pháp này có tầm quan trọng hàng đầu trong lĩnh vực quang học sợi phi tuyến và viễn thông, góp phần vào sự hiểu biết của chúng tôi về các khái niệm vật lý cơ bản nằm dưới phương trình này. Khả năng thích nghi và ứng dụng của kỹ thuật mới và tiêu chuẩn hóa của chúng tôi được minh chứng qua việc áp dụng nó vào nhiều thách thức toán học và vật lý khác nhau.

Từ khóa

#phương trình Schrödinger phi tuyến #quang học #soliton #tương tác sóng #kỹ thuật phân tích

Tài liệu tham khảo

Abdel-Gawad, H.I., Osman, M.S.: On the variational approach for analyzing the stability of solutions of evolution equations. Kyungpook Math. J. 53(4), 661–680 (2013) Abdel-Gawad, H.I., Osman, M.: On shallow water waves in a medium with time-dependent dispersion and nonlinearity coefficients. J. Adv. Res. 6, 593–599 (2015) Ahmad, J., Akram, S., Rehman, S.U., Turki, N.B., Shah, N.A.: Description of soliton and lump solutions to M-truncated stochastic Biswas-Arshed model in optical communication. Result Phys. 51, 106719 (2023) Akram, S., Ahmad, J., Rehman, S.U.: Stability analysis and dynamical behavior of solitons in nonlinear optics modelled by Lakshmanan–Porsezian–Daniel equation. Opt. Quant. Electron. 55, 685 (2023) Babajanov, B., Abdikarimov, F.: The application of the functional variable method for solving the loaded non-linear evaluation equations. Front. Appl. Math Stat. 8, 1–9 (2022) Baskonus, H.M., Osman, M.S., Rehman, H., Ramzan, M., Tahir, M., Ashraf, S.: On pulse propagation of soliton wave solutions related to the perturbed Chen–Lee–Liu equation in an optical fiber. Opt. Quantum Electron. 53(10), 556 (2021) Bekir, A., San, S.: The functional variable method to some complex nonlinear evolution equations. J. Mod. Math. Front. 1(3), 5–9 (2012) Boakye, G., Hosseini, K., Hinçal, E., Sirisubtawee, S., Osman, M.S.: Some models of solitary wave propagation in optical fibers involving Kerr and parabolic laws. Opt. Quant. Electron. 56(3), 345 (2024) Chowdhury, M.A., Miah, M.M., Iqbal, M.A., Alshehri, H.M., Baleanu, D., Osman, M.S.: Advanced exact solutions to the nano-ionic currents equation through MTs and the soliton equation containing the RLC transmission line. Eur. Phys. J. plus 138, 502 (2023) Elsayed, E.M.E., Alurrfi, K.A.E.: The generalized projective Riccati equations method and its applications for solving two nonlinear PDEs describing microtubules. Int. J. Phys. Sci. 10, 391–402 (2015) El-Sherif, A.A., Shoukry, M.M.: Copper (II) complexes of imino-bis (methyl phosphonic acid) with some bio-relevant ligands. Equilibrium studies and hydrolysis of glycine methyl ester through complex formation. J. Coord. Chem. 58(16), 1401–1415 (2005) Fan, E.: Extended tanh-function method and its applications to nonlinear equations. Phys. Lett. A 277, 212–218 (2000) Fan, E., Zhang, H.: A note on the homogeneous balance method. Phys. Lett. A 246, 403–406 (1998) Fetoh, A., Asla, K.A., El-Sherif, A.A., El-Didamony, H., El-Reash, G.M.A.: Synthesis, structural characterization, thermogravimetric, molecular modelling and biological studies of Co (II) and Ni (II) Schiff bases complexes. J. Mol. Struct. 1178, 524–537 (2019) Fokas, A.S., Lenells, J.: The unified method: I Nonlinearizable problems on the half-line. J. Phys. A Math. Theor. 45(19), 195201 (2012) Ganie, A.H., Sadek, L.H., Tharwat, M.M., Iqbal, M.A., Miah, M.M., Rasid, M.M., Elazab, N.S., Osman, M.M.: New investigation of the analytical behaviors for some nonlinear PDEs in mathematical physics and modern engineering. Part. Differ. Eqn. Appl. Math. 9, 100608 (2024) Habib, M.A., Ali, H.M.S., Miah, M.M., Akbar, M.A.: The generalized Kudryashov method for new closed form traveling wave solutions to some NLEEs. AIMS Math. 4, 896–909 (2019) Hosseini, K., Alizadeh, F., Hinçal, E., Baleanu, D., Akgül, A., Hassan, A.M.: Lie symmetries, bifurcation analysis, and Jacobi elliptic function solutions to the nonlinear Kodama equation. Result Phys. 54, 107129 (2023a) Hosseini, K., Sadri, K., Hinçal, E., Sirisubtawee, S., Mirzazadeh, M.: A generalized nonlinear Schrödinger involving the weak nonlocality: its Jacobi elliptic function solutions and modulational instability. Optik 288, 171176 (2023b) Hosseini, K., Hinçal, E., Ilie, M.: Bifurcation analysis, chaotic behaviors, sensitivity analysis, and soliton solutions of a generalized Schrödinger equation. Nonlinear Dyn. 111(18), 17455–17462 (2023c) Iqbal, M.A., Baleanu, D., Miah, M.M., Ali, H.M.S., Alshehri, H.M., Osman, M.S.: New soliton solutions of the mZK equation and the Gerdjikov-Ivanov equation by employing the double (G′/G, 1/G)-expansion method. Result Phys. 47, 106391 (2023) Irshad, A., Mohyud-din, S.T., Ahmed, N., Khan, U.: A new modification in simple equation method and its applications on nonlinear equations of physical nature. Result Phys. 7, 4232–4240 (2017) Islam, S., Khan, K., Arnous, A.H.: Generalized Kudryashov method for solving some (3+ 1)-dimensional nonlinear evolution equations. New Trends Math. Sci. 57, 46–57 (2015) Islam, S.M.R., Arafat, S.M.Y., Wang, H.: Abundant closed-form wave solutions to the simplified modified Camassa–Holm equation. J. Ocean Eng. Sci. 8, 238–245 (2023) Islam, M.N., Al-Amin, M., Akbar, A., Wazwaz, A.M., Osman, M.S.: Assorted optical soliton solutions of the nonlinear fractional model in optical fibers possessing beta derivative. Physica Scr. 99(1), 015227 (2024) Jafari, H., Kadkhoda, N., Baleanu, D.: Fractional Lie group method of the time-fractional Boussinesq equation. Nonlinear Dyn. 81, 1569–1574 (2015) Kaur, L.: Generalized (G’/G)-expansion method for generalized fifth order KdV equation with time-dependent coefficients. Math. Sci. Lett. 3, 255–261 (2014) Kumar, A., Pankaj, R.D.: Tanh–coth scheme for traveling wave solutions for Nonlinear Wave Interaction model. J. Egypt. Math. Soc. 23, 282–285 (2015) Kumar, D., Park, C., Tamanna, N., Paul, G.C., Osman, M.S.: Dynamics of two-mode Sawada-Kotera equation: mathematical and graphical analysis of its dual-wave solutions. Result Phys. 19, 103581 (2020) Kumar, D., Paul, G.C., Seadawy, A.R., Darvishi, M.T.: A variety of novel closed-form soliton solutions to the family of Boussinesq-like equations with different types. J. Ocean Eng. Sci. 7, 543–554 (2022) Ma, W.X.: AKNS type reduced integrable bi-Hamiltonian hierarchies with four potentials. Appl. Math. Lett. 145, 108775 (2023) Ma, W.X., Huang, T., Zhang, Y.: A multiple exp-function method for nonlinear differential equations and its application. Phys. Scr. 82(6), 065003 (2010) Mamun, A.A., Ananna, S.N., An, T., Asaduzzaman, M., Miah, M.M.: Solitary wave structures of a family of 3D fractional WBBM equation via the tanh–coth approach. Partial Differ. Equ. Appl. Math. 5, 100237 (2022) Mirzazadeh, M.: Topological and non-topological soliton solutions of Hamiltonian amplitude equation by He’s semi-inverse method and ansatz approach. J. Egypt. Math. Soc. 23, 292–296 (2015) Mohanty, S.K., Kravchenko, O.V., Deka, M.K., Dev, A.N., Churikov, D.V.: The exact solutions of the 2+ 1–dimensional Kadomtsev-Petviashvili equation with variable coefficients by extended generalized G′ G-expansion method. J. King Saud Univ. - Sci. 35, 102358 (2023) Naher, H., Abdullah, F.A.: The basic (G’/G)-expansion method for the fourth order Boussinesq equation. Appl. Math. 03, 1144–1152 (2012) Parkes, E.J., Duffy, B.R.: An automated tanh-function method for finding solitary wave solutions to non-linear evolution equations. Comput. Phys. Commun. 98, 288–300 (1996) Rehman, S.U., Ahmad, J.: Stability analysis and novel optical pulses to Kundu–Mukherjee–Naskar model in birefringent fibers. Int. J. Mod. Phys. B (2023). https://doi.org/10.1142/S0217979224501923 Rehman, S.U., Bilal, M., Ahmad, J.: Highly dispersive optical and other soliton solutions to fiber Bragg gratings with the application of different mechanisms. Int. J. Mod. Phys. B 36(28), 2250193 (2022a) Rehman, S.U., Bilal, M., Ahmad, J.: The study of solitary wave solutions to the time conformable Schrödinger system by a powerful computational technique. Opt. Quant. Electron. 54, 228 (2022b) Rehman, S.U., Ahmad, J., Muhammad, T.: Dynamics of novel exact soliton solutions to Stochastic Chiral Nonlinear Schrödinger Equation. Alex. Eng. J. 79, 568–580 (2023) Roshid, H.O., Kabir, M.R., Bhowmik, R.C., Datta, B.K.: Investigation of Solitary wave solutions for Vakhnenko–Parkes equation via exp-function and Exp (− ϕ (ξ))-expansion method. Springerplus 3, 1–10 (2014) Taghizadeh, N., Mirzazadeh, M.: The first integral method to some complex nonlinear partial differential equations. J. Comput. Appl. Math. 235, 4871–4877 (2011) Tandel, P., Patel, H., Patel, T.: Tsunami wave propagation model: A fractional approach. J. Ocean Eng. Sci. 7, 509–520 (2022) Tozar, A., Tasbozan, O., Kurt, A.: Optical soliton solutions for the (1+ 1)-dimensional resonant nonlinear Schröndinger’s equation arising in optical fibers. Opt. Quantum Electron. 53(6), 316 (2021) Wang, M., Zhou, Y., Li, Z.: Application of a homogeneous balance method to exact solutions of nonlinear equations in mathematical physics. Phys. Lett. A 216, 67–75 (1996) Wen, X., Lü, D.: Extended Jacobi elliptic function expansion method and its application to nonlinear evolution equation. Chaos Solitons Fractals 41, 1454–1458 (2009) Yomba, E.: General projective Riccati equations method and exact solutions for a class of nonlinear partial differential equations. Chin. J. Phys. 43, 991–1003 (2005) Zayed, E.M.E., Alurrfi, K.A.E.: Extended auxiliary equation method and its applications for finding the exact solutions for a class of nonlinear Schrödinger-type equations. Appl. Math. Comput. 289, 111–131 (2016) Zhang, Z.Y.: Exact traveling wave solutions of the perturbed Klein-Gordon equation with quadratic nonlinearity in (1+ 1)-dimension, Part I: Without local inductance and dissipation effect. Turkish J. Phys. 37, 259–267 (2013)