Discontinuous wave equations and a topological degree for some classes of multi-valued mappings

Michal Fečkan1, Richard Kollár2
1Department of Mathematical Analysis, Comenius University, Bratislava, Slovakia
2Institute of Applied Mathematics, Comenius University, Bratislava, Slovakia

Tóm tắt

The Leray-Schauder degree is extended to certain multi-valued mappings on separable Hilbert spaces with applications to the existence of weak periodic solutions of discontinuous semilinear wave equations with fixed ends.

Tài liệu tham khảo

J. Berkovits: Some bifurcation results for a class of semilinear equations via topological degree method. Bull, Soc. Math. Belg. 44 (1992), 237–247. J. Berkovita & V. Mustonen: An extension of Leray-Schauder degree and applications to nonlinear wave equations. Diff. Int. Eqns. 3 (1990), 945–963. J. Berkovits & V. Muatonen: Topological degree for perturbations of linear maximal monotone mappings and applications to a class of parabolic problems. Rend. Mat. VII-12 (1992), 597–621. H. Brezis: Periodic solutions of nonlinear vibrating strings and duality principles. Bull. Amer. Math. Soc. 8 (1983), 409–426. F. E. Browder: Fixed point theory and nonlinear problems. Bull. Amer. Math. Soc. 9 (1983), 1–39. K. C. Chang: Free boundary problems and the set-valued mappings. J. Differential Eqns. 49 (1983), 1–28. K. Deimling: Nonlinear Functional Analysis. Springer-Verlag, Berlin, 1985. H. Gajewski, K. Gröger & K. Zacharias: Nichtlineare Operatorgleichungen und OperatordifFerentialgleichungen, Akademie-Verlag, Berlin, 1974. A. Kittilä: On the topological degree for a class of mappings of monotone type and applications to strongly nonlinear elliptic problems. Ann. Acad. Sci. Fenn. Ser. A I Math. Disser. 91 (1994). W. Rudin: Real and Complex Analysis. McGraw-Hill, Inc., New York, 1974.