Discontinuous Galerkin methods for Maxwell's equations in the time domain
Tài liệu tham khảo
Yee, 1966, Numerical solution of initial boundary value problems involving Maxwell's equations in isotropic medium, IEEE Trans. Antennas Propag., 14, 302, 10.1109/TAP.1966.1138693
Rao, 1999
Cohen, 2001
Rao, 1991, Transient scattering by conducting surfaces of arbitrary shape, IEEE Trans. Antennas Propag., 39, 10.1109/8.64435
I. Terrasse, Résolution mathématique et numérique des équations de Maxwell instationnaires par une méthode de potentiels retardés, Thèse de Doctorat de l'école Polytechnique, 1993
Bonnet, 1997, Numerical modeling of scattering problems using a time finite volume method, J. Electromagnetic Waves Appl., 11, 1165, 10.1163/156939397X01070
Ferrieres, 2004, Application of a hybrid FDTD/FVTD method to solve an automatic EMC problem, IEEE Trans. on EMC, 46, 624
Remaki, 2000, A new finite volume scheme for solving Maxwell's system, COMPEL—Internat. J. Comput. Math. Electric Electronic Engrg., 19, 913, 10.1108/03321640010334677
Hesthaven, 2002, Nodal high-order methods on unstructured grids. I. Time-domain solution of Maxwell's equations, J. Comput. Phys., 181, 186, 10.1006/jcph.2002.7118
S. Pernet, Étude de méthodes d'ordre élevé pour résoudre les équations de Maxwell dans le domaine temporel. Application à la détection et à la compatibilité électromagnétique, PhD thesis, Université de Paris IX – Dauphine, November 2004
S. Piperno, L. Fezoui, A centered discontinuous Galerkin finite volume scheme for the 3D heterogeneous Maxwell equations on unstructured meshes, INRIA Research Report No. 4733, February 2003
Berenger, 1994, A perfectly matched layer for the absorption of electromagnetic waves, J. Comput. Phys., 114, 185, 10.1006/jcph.1994.1159
