Directly wireless communication of human minds via non-invasive brain-computer-metasurface platform
eLight - 2022
Tóm tắt
Brain-computer interfaces (BCIs), invasive or non-invasive, have projected unparalleled vision and promise for assisting patients in need to better their interaction with the surroundings. Inspired by the BCI-based rehabilitation technologies for nerve-system impairments and amputation, we propose an electromagnetic brain-computer-metasurface (EBCM) paradigm, regulated by human’s cognition by brain signals directly and non-invasively. We experimentally show that our EBCM platform can translate human’s mind from evoked potentials of P300-based electroencephalography to digital coding information in the electromagnetic domain non-invasively, which can be further processed and transported by an information metasurface in automated and wireless fashions. Directly wireless communications of the human minds are performed between two EBCM operators with accurate text transmissions. Moreover, several other proof-of-concept mind-control schemes are presented using the same EBCM platform, exhibiting flexibly-customized capabilities of information processing and synthesis like visual-beam scanning, wave modulations, and pattern encoding.
Từ khóa
Tài liệu tham khảo
R. Zhang et al., Control of a wheelchair in an indoor environment based on a brain–computer interface and automated navigation. IEEE Trans. Neural Syst. Rehabil. Eng. 24, 128–139 (2015)
Y. Chae, J. Jeong, S. Jo, Toward brain-actuated humanoid robots: asynchronous direct control using an EEG-based BCI. IEEE Trans. Rob. 28, 1131–1144 (2012)
M.M. Shanechi, Brain–machine interfaces from motor to mood. Nat. Neurosci. 22, 1554–1564 (2019)
X. Chen et al., High-speed spelling with a noninvasive brain–computer interface. Proc. Natl. Acad. Sci. 112, E6058–E6067 (2015)
L.A. Farwell, E. Donchin, Talking off the top of your head: toward a mental prosthesis utilizing event-related brain potentials. Electroencephalogr. Clin. Neurophysiol. 70, 510–523 (1988)
A. Lenhardt, M. Kaper, H.J. Ritter, An adaptive P300-based online brain–computer interface. IEEE Trans. Neural Syst. Rehabil. Eng. 16, 121–130 (2008)
G. Townsend, V. Platsko, Pushing the P300-based brain–computer interface beyond 100 bpm: Extending performance guided constraints into the temporal domain. J. Neural Eng. 13, 026024 (2016)
F.R. Willett, D.T. Avansino, L.R. Hochberg, J.M. Henderson, K.V. Shenoy, High-performance brain-to-text communication via handwriting. Nature 593, 249–254 (2021). https://doi.org/10.1038/s41586-021-03506-2
N.F. Yu et al., Light propagation with phase discontinuities: generalized laws of reflection and refraction. Science 334, 333–337 (2011). https://doi.org/10.1126/science.1210713
R. Liu et al., Broadband ground-plane cloak. Science 323, 366–369 (2009). https://doi.org/10.1126/science.1166949
Q. Ma, Z.L. Mei, S.K. Zhu, T.Y. Jin, T.J. Cui, Experiments on active cloaking and illusion for laplace equation. Phys. Rev. Lett. (2013). https://doi.org/10.1103/PhysRevLett.111.173901
J.B. Pendry, Negative refraction makes a perfect lens. Phys. Rev. Lett. 85, 3966–3969 (2000). https://doi.org/10.1103/PhysRevLett.85.3966
U. Leonhardt, Perfect imaging without negative refraction. New J. Phys. (2009). https://doi.org/10.1088/1367-2630/11/9/093040
S.A. Ramakrishna, J.B. Pendry, M.C.K. Wiltshire, W.J. Stewart, Imaging the near field. J. Mod. Opt. 50, 1419–1430 (2003). https://doi.org/10.1080/0950034021000020824
L. Chen et al., Dual-polarization programmable metasurface modulator for near-field information encoding and transmission. Photonics Res. (2021). https://doi.org/10.1364/prj.412052
J.Y. Dai, J. Zhao, Q. Cheng, T.J. Cui, Independent control of harmonic amplitudes and phases via a time-domain digital coding metasurface. Light-Sci. Appl. 7, 90 (2018). https://doi.org/10.1038/s41377-018-0092-z
X.G. Zhang et al., An optically driven digital metasurface for programming electromagnetic functions. Nat. Electron. (2020). https://doi.org/10.1038/s41928-020-0380-5
M. Manjappa et al., Reconfigurable MEMS Fano metasurfaces with multiple-input-output states for logic operations at terahertz frequencies. Nat. Commun. (2018). https://doi.org/10.1038/s41467-018-06360-5
Q. Ma et al., Controllable and programmable nonreciprocity based on detachable digital coding metasurface. Adv. Opt. Mater 7, 1901285 (2019). https://doi.org/10.1002/adom.201901285
L. Chen et al., Space-energy digital-coding metasurface based on an active amplifier. Phys. Rev. Appl. 11, 6 (2019). https://doi.org/10.1103/PhysRevApplied.11.054051
Q. Ma, T.J. Cui, Information metamaterials: bridging the physical world and digital world. PhotoniX 1, 1–32 (2020). https://doi.org/10.1186/s43074-020-00006-w
T.J. Cui, M.Q. Qi, X. Wan, J. Zhao, Q. Cheng, Coding metamaterials, digital metamaterials and programmable metamaterials. Light Sci. Appl. 3, e218 (2014). https://doi.org/10.1038/lsa.2014.99
C. Della Giovampaola, N. Engheta, Digital metamaterials. Nat. Mater. 13, 1115 (2014). https://doi.org/10.1038/nmat4082
L. Zhang et al., Space-time-coding digital metasurfaces. Nat. Commun 9, 4334 (2018). https://doi.org/10.1038/s41467-018-06802-0
L. Zhang et al., A wireless communication scheme based on space- and frequency-division multiplexing using digital metasurfaces. Nat. Electron. 4, 218–227 (2021). https://doi.org/10.1038/s41928-021-00554-4
Q. Ma et al., Smart metasurface with self-adaptively reprogrammable functions. Light-Sci. Appl. 8, 98 (2019). https://doi.org/10.1038/s41377-019-0205-3
Q. Ma et al., Smart sensing metasurface with self-defined functions in dual polarizations. Nanophotonics 9, 3271–3278 (2020). https://doi.org/10.1515/nanoph-2020-0052
Liu, C., Yu, W. M., Ma, Q., Li, L. & Cui, T. J. Intelligent coding metasurface holograms by physics-assisted unsupervised generative adversarial network. Photonics Research 9, doi:https://doi.org/10.1364/prj.416287 (2021).
L. Li et al., Electromagnetic reprogrammable coding-metasurface holograms. Nat. Commun. 8, 197 (2017). https://doi.org/10.1038/s41467-017-00164-9
L. Li et al., Machine-learning reprogrammable metasurface imager. Nat. Commun. 10, 1082 (2019). https://doi.org/10.1038/s41467-019-09103-2
S. Liu et al., Convolution operations on coding metasurface to reach flexible and continuous controls of Terahertz. Adv. Sci. 3, 1600156 (2016). https://doi.org/10.1002/advs.201600156
X.G. Zhang et al., An optically driven digital metasurface for programming electromagnetic functions. Nat. Electron. 3, 165–171 (2020). https://doi.org/10.1038/s41928-020-0380-5
J.W. You et al., Reprogrammable plasmonic topological insulators with ultrafast control. Nat. Commun. 12, 5468 (2021). https://doi.org/10.1038/s41467-021-25835-6
W.S. Pritchard, Psychophysiology of P300. Psychol. Bull 89, 506–540 (1981)
E. Donchin, K.M. Spencer, R. Wijesinghe, The mental prosthesis: assessing the speed of a P300-based brain-computer interface. IEEE Trans. Rehabil. Eng. 8, 174–179 (2000)
Materials and methods are available as supplementary materials.
T. Kaufmann, A. Kübler, Beyond maximum speed—a novel two-stimulus paradigm for brain–computer interfaces based on event-related potentials (P300-BCI). J. Neural Eng. 11, 056004 (2014)