Phản ứng động đất theo hướng đối với địa hình phức tạp: Một nghiên cứu trường hợp của trận động đất Lushan Ms 7.0 năm 2013

Journal of Mountain Science - Tập 17 - Trang 2049-2067 - 2020
Bo Zhao1,2, Yun-sheng Wang2, Li-jun Su1,3,4,5, Yong-hong Luo2, Jing Zhang2
1Key Laboratory of Mountain Hazards and Earth Surface Processes, Institute of Mountain Hazards and Environment, Chinese Academy of Sciences, Chengdu, China
2State Key Laboratory of Geohazard Prevention and Geoenvironment Protection, Chengdu University of Technology, Chengdu, China
3CAS Center for Excellence in Tibetan Plateau Earth Sciences, Beijing, China
4China-Pakistan joint Research Center on Earth Sciences, Islamabad, Pakistan
5University of Chinese Academy of Sciences, Beijing, China

Tóm tắt

Sự biến thiên theo hướng của phản ứng tại chỗ có thể cung cấp cái nhìn sâu sắc về khả năng khuếch đại tại chỗ và điều kiện địa chấn liên quan đến sự xuất hiện của các mối nguy địa chất. Trong nghiên cứu này, nhiều phương pháp phản ứng tại chỗ theo hướng, bao gồm D-Arias (Directional-Arias), D-SER (Directional- Shaking energy ratio), D-HVSR (Directional-Horizontal to vertical spectral ratio) và D-SSR (Directional — Standard spectral ratio), được áp dụng để phân tích dữ liệu địa chấn của trận động đất Lushan Ms 7.0 năm 2013, được ghi lại bởi trạm tự lập Lengzhuguan (LZG), địa điểm có địa hình phức tạp gồm các đỉnh núi cô lập, núi lớn và một số hình thái vi địa lý điển hình. Kết quả cho thấy đỉnh núi cô lập có thể gây ra phản ứng tại chỗ mạnh hơn so với núi lớn, và hướng phản ứng rõ ràng là tương đối vuông góc với đường đỉnh của nó. Với sự gia tăng độ cao, tần số cộng hưởng tại chỗ giảm. Các hình thái vi địa lý khác nhau trên núi gây ra các phản ứng tại chỗ khác nhau, thể hiện dưới dạng dốc nổi > dốc thẳng. Phản ứng tại chỗ chủ yếu tồn tại ở lớp bề mặt của núi và cho thấy rằng với sự gia tăng khoảng cách đến bề mặt núi, phản ứng tại chỗ yếu đi, tần số cộng hưởng tại chỗ tăng lên, và hướng phản ứng nổi bật vuông góc với đường đỉnh của nó.

Từ khóa

#phản ứng động đất #địa hình phức tạp #tần số cộng hưởng #Lushan #địa chấn

Tài liệu tham khảo

Arias A (1970) A measure of earthquake intensity, in Seismic Design for Nuclear Power Plants (ed. Hansen R.J). MIT Press, Cambridge, Massachusetts. pp 438–483. Arias A (1996) Local directivity of strong ground motion. In Proc. Eleventh World Conference on Earthquake Engineering, Elsevier Science Ltd, ISBN:0-08-042822-2, pp. 1–8. Ashford SA, Sitar N (1997) Analysis of Topographic Amplification of Inclined Shear Waves in a Steep Coastal Bluff. Bulletin of the Seismological Society of America 87(3):692–700 Borcherdt RD (1970) Effects of local geology on ground motion near San Francisco Bay. Bulletin of the Seismological Society of America 60(1): 29–61. Bourdeau C, Havenith HB (2008) Site effects modelling applied to the slope affected by the suusamyr earthquake (Kyrgyzstan, 1992). Engineering Geology 97(3–4): 126–145. https://doi.org/10.1016/j.enggeo.2007.12.009 Cao SH, Wang YS, He JX (2015) Characteristics and disaster model of co-seismic landslides triggered by the Kangding Ms 6.3 earthquake on the 22th of November, Sichuan province, China. The Chinese Journal of Geological Hazard and Control 26(4): 87–93. (In Chinese) 16031/k.cnki.issn.1003-8035.2015.04.15 Dai F, Lee C, Deng J, Tham L (2005) The 1786 earthquake-triggered landslide dam and subsequent dam-break flood on the Dadu River, southwestern China. Geomorphology 73(3): 277–278. https://doi.org/10.1016/j.geomorph.2005.06.011 Deng H, Wu LZ, Huang RQ, et al. (2017) Formation of the Siwanli ancient landslide in the Dadu River, China. Landslides 14(1): 385–394. https://doi.org/10.1007/s10346-016-0756-9 Fan X, Scaringi G, Xu Q, et al. (2018) Coseismic landslides triggered by the 8th August 2017 Ms 7.0 Jiuzhaigou earthquake (Sichuan, China): factors controlling their spatial distribution and implications for the seismogenic blind fault identification. Landslides 15(5):967–983. https://doi.org/10.1007/s10346-018-0960-x Fan X, Westen CJV, Xu Q, et al. (2012) Analysis of landslide dams induced by the 2008 Wenchuan earthquake. Journal of Asian Earth Sciences 57: 25–37. https://doi.org/10.1016/j.jseaes.2012.06.002 Fiore VD (2010) Seismic site amplification induced by topographic irregularity: results of a numerical analysis on 2d synthetic models. Engineering Geology 114(3–4): 109–115. https://doi.org/10.1016/j.enggeo.2010.05.006 Gaudio VD, Coccia S, Wasowski J, et al. (2008) Detection of directivity in seismic site response from microtremor spectral analysis. Natural Hazards and Earth System Sciences 8(4): 751–762. https://doi.org/10.5194/nhess-8-751-2008 Gaudio VD, Muscillo S, Wasowski J (2014) What we can learn about slope response to earthquakes from ambient noise analysis: an overview. Engineering Geology 182: 182–200. https://doi.org/10.1016/j.enggeo.2014.05.010 Gaudio VD, Pierri P, Rajabi AM (2015) An approach to identify site response directivity of accelerometer sites and application to the Iranian area. Pure and Applied Geophysics 172(6): 1471–1490. https://doi.org/10.1007/s00024-014-1003-8 Gaudio VD, Wasowski J (2007) Directivity of slope dynamic response to seismic shaking. Geophysical Research Letters 34(12): 107–124. https://doi.org/10.1029/2007GL029842 Gaudio VD, Wasowski J (2011) Advances and problems in understanding the seismic response of potentially unstable slopes. Engineering Geology 122(1): 73–83. https://doi.org/10.1016/j.enggeo.2010.09.007 Geli L, Bard PY, Jullien B (1988) The effect of topography on earthquake ground motion: A review and new results. Bulletin of the Seismological Society of America 78(1):42–63. Gorum T, Fan X, Van Westen CJ, et al. (2011) Distribution pattern of earthquake-induced landslides triggered by the 12 May 2008 Wenchuan earthquake. Geomorphology 133(3–4): 152–167. https://doi.org/10.1016/j.geomorph.2010.12.030 Harp EL, Jibson RW (2002) Anomalous concentrations of seismically triggered rock falls in Pacoima Canyon: are they caused by highly susceptible slopes or local amplification of seismic shaking? Bulletin of the Seismological Society of America 92: 3180–3189. https://doi.org/10.1785/0120010171 Hu X, Lin J, Zhang M, et al. (2013) Trigger effect of earthquake geohazards around baoxing county induced by lushan 4–20 strong earthquake. Journal of Southwest Jiaotong University 48(4): 599–608. (In Chinese) https://doi.org/10.3969/j.issn.0258-2724.2013.04.003 Huang R (2009) Geohazard assessment of the Wenchuan earthquake. Science Press, Beijing. (In Chinese) Huang R, Xu Q, Huo J (2011) Mechanism and geo-mechanics models of landslides triggered by 5.12 Wenchuan earthquake. Journal of Mountain Science 8(2): 200–210. https://doi.org/10.1007/s11629-011-2104-9 Katayama T, Yamazaki F, Nagata S, et al. (1990) A strong motion database for the Chiba seismometer array and its engineering analysis. Earthquake Engineering and Structural Dynamics 19(8): 1089–1106. https://doi.org/10.1002/eqe.4290190802 Kubo T, Penzien J (1979) Analysis of three — dimensional strong ground motions along principal axes, San Fernando earthquake. Earthquake Engineering and Structural Dynamics 7(3): 265–278. https://doi.org/10.1002/eqe.4290070306 Lermo J, Chávez-García FJ (1993) Site effect evaluation using spectral ratios with only one station. Bulletin of the seismological society of America 83(5): 1574–1594. Li YS, Wang YS, Pei XJ (2013) Research on tectonic fracturing and causative fault of Lushan earthquake in Sichuan, China. Journal of Chengdu University of Technology 40(3): 242–249. (In Chinese) https://doi.org/10.3969/j.issn.1671-9727.2013.03.03 Liu JH, Xu Y, Hao TY (2004) Study on physical mechanism of the seismic wave attenuation. Progress In Geophysics 19(1): 1–7. (In Chinese) Liu CL, Zheng Y, Ge C, et al. (2013) Rupture process of the M7.0 Lushan earthquake. Science China 56(7): 1187–1192. https://doi.org/10.1360/zd-2013-43-6-1020 Luo YH, Gaudio VD, Huang R, et al. (2014) Evidence of hillslope directional amplification from accelerometer recordings at Qiaozhuang (Sichuan — China). Engineering Geology 183:193–207. https://doi.org/10.1016/j.enggeo.2014.10.015 Luo YH, Wang YS, He Y (2013) Monitoring result analysis of Lengzhuguan slope ground shock response of Lushan earthquake of Sichuan. China. Journal of Chengdu University of Technology 40(3):232–241. (In Chinese with English Abstract). https://doi.org/10.3969/j.issn.1671-9727.2013.03.02 Nakamura Y (1989) A method for dynamic characteristics estimation of subsurface using microtremor on the ground surface. Railway Technical Research Institute, Quarterly Reports 30(1): 25–33. Nuttli OW (1973) Seismic wave attenuation and magnitude relations for eastern North America. Journal of Geophysical Research 78(5): 876–885. https://doi.org/10.1029/JB078i005p00876 Parker RN, Hancox GT, Petley DN (2015) Spatial distributions of earthquake induced landslides and hillslope preconditioning in the northwest South Island, New Zealand. Earth Surface Dynamics 3(4): 501–525. https://doi.org/10.5194/esurf-3-501-2015 Panzera F, Halldorsson B, Vogfjörð K (2017) Directional effects of tectonic fractures on ground motion site amplification from earthquake and ambient noise data: a case study in South Iceland. Soil Dynamics and Earthquake Engineering 97: 143–154. https://doi.org/10.1016/j.soildyn.2017.03.024 Papadimitriou E, Wen X, Karakostas V, et al. (2004) Earthquake triggering along the Xianshuihe fault zone of western Sichuan, China. Pure and Applied Geophysics 161(8): 1683–1707. https://doi.org/10.1007/s00024-003-2471-4 Pedersen H, Brun B, Hatzfeld D, et al. (1994) Ground-motion amplitude across ridges. Bulletin of the Seismological Society of America 84(6): 1786–1800. Pischiutta M, Salvini F, Fletcher J, et al. (2012) Horizontal polarization of ground motion in the hayward fault zone at Fremont, California: dominant fault-high-angle polarization and fault-induced cracks. Geophysical Journal International 188(3): 1255–1272. https://doi.org/10.1111/j.1365-246X.2011.05319.x Sepulveda SA, William M, Randall WJ, et al (2005) Seismically induced rock slope failures resulting from topographic amplification of strong ground motions: the case of Pacoima Canyon, California. Engineering Geology 80: 336–348. https://doi.org/10.1016/j.enggeo.2005.07.004 Sun JB, Yue H, Shen ZG, et al. (2018) 2017 Jiuzhaigou earthquake: a complicated event occurred in a young fault system. Geophysical Research Letters 45:1–12. https://doi.org/10.1002/2017GL076421 Spudich P (1996) Directional topographic site response at Tarzana observed in aftershocks of the 1994 Northridge, California, earthquake: Implications for mainshock motions. Bulletin of the Seismological Society of America 86(1):S193–S208. Tang C, Ma G, Chang M, et al. (2015) Landslides triggered by the 20 April 2013 Lushan earthquake, Sichuan Province, China. Engineering Geology 187: 45–55. https://doi.org/10.1016/j.enggeo.2014.12.004 Tripe R, Kontoe S, Wong TKC (2013) Slope topography effects on ground motion in the presence of deep soil layers. Soil Dynamics and Earthquake Engineering 50(7):72–84. https://doi.org/10.1016/j.soildyn.2013.02.011 U S Geological Survey (2013) M 6.6 — 52 km WSW of Linqiong, China. http://earthquake.usgs.gov/earthquakes/eventpage/usb000gcdd#summary(accessed on: 2013-04-20) U S Geological Survey (2014) M 5.9 — 38km NNW of Kangding, China https://earthquake.usgs.gov/earthquakes/eventpage/usb000syy0/executive (accessed on: 2014-11-22). Wang YS, He JX, Luo YH (2017) Seismic response of the Lengzhuguan slope during Kangding Ms5.8 earthquake. Journal of Mountain Science 14(11): 2337–2347. https://doi.org/10.1007/s11629-017-4368-1 Wang Y, Wang D, Ma X (2012) Slope seismic response monitoring on the aftershocks of the Wenchuan earthquake in the Mianzhu section. Journal of Mountain Science 9(4): 523–528. https://doi.org/10.1007/s11629-012-2179-y Wang Z, Wang J, Chen ZL, et al. (2011) Seismic imaging, crustal stress and gps data analyses: implications for the generation of the 2008 Wenchuan earthquake (M7.9), China. Gondwana Research 19(1): 202–212. https://doi.org/10.1016/j.gr.2010.05.004 Wu JF (2013) Research on development characteristics and genetic mechanism of the seismic landslide in Dadu River. Chengdu University of Technology, Ph.D theis. (In Chinese) Xu C, Xu, X, Shyu, J, et al. (2015) Landslides triggered by the 20 April 2013 Lushan, China, Mw 6.6 earthquake from field investigations and preliminary analyses. Landslides 12(2): 365–385. https://doi.org/10.1007/s10346-014-0546-1 Xu C, Xu X, Yao X, et al. (2013a) Three (nearly) complete inventories of landslides triggered by the May 12, 2008 Wenchuan mw 7.9 earthquake of china and their spatial distribution statistical analysis. Landslides 11(3): 441–461. https://doi.org/10.1007/s10346-013-0404-6 Xu Q, Pei XJ, Huang RQ (2009b) Large-scale landslides induced by Wenchuan earthquake. Science press, Beijing. (In Chinese) Xu C, Xu X, Shyu JBH, et al. (2014) Landslides triggered by the 22 July 2013 Minxian-Zhangxian, China, Mw 5.9 earthquake: inventory compiling and spatial distribution analysis. Journal of Asian Earth Sciences 92: 125–142. https://doi.org/10.1016/j.jseaes.2014.06.014 Xu X, Gao R, Guo X, et al. (2017). Outlining tectonic inheritance and construction of the Min Shan region, eastern Tibet, using crustal geometry. Scientific Reports, 7(1): 13798. https://doi.org/10.1038/s41598-017-14354-4 Xu X, Wen X, Yu G, et al. (2009a) Coseismic reverse-and oblique-slip surface faulting generated by the 2008 Mw 7.9 Wenchuan earthquake China. Geology 37(6): 515–518. https://doi.org/10.1130/G25462A.1 Xu X, Wen X, Han Z, et al. (2013b) Lushan M S 7.0 earthquake: A blind reserve-fault event. Chinese Science Bulletin 58(28–29): 3437–3443. https://doi.org/10.1007/s11434-013-5999-4 Yi GX, Long F, Wen XZ, et al (2015) Seismogenic structure of the M6.3 Kangding earthquake sequence on 22 Nov. 2014, southwestern China. Chinese Journal of Geophysics 058(004):1205–1219. https://doi.org/10.6038/cjg20150410 Zhao B (2020) The Mechanism of Large Earthquake-Triggered Landslides in Area of High Intensity and Deep Canyon of Northwest Sichuan. Chengdu University of Technology. Ph.D thesis. (In Chinese) Zhao B, Huang Y, Zhang C, et al. (2015) Crustal deformation on the Chinese mainland during 1998–2004 based on GPS data. Geodesy and Geodynamics 6: 7–15. https://doi.org/10.1016/j.geog.2014.12.006 Zhao B, Li W, Wang Y, et al. (2019) Landslides triggered by the Ms 6.9 Nyingchi earthquake, china (18 November 2017): analysis of the spatial distribution and occurrence factors. Landslides 16(4): 765–776. https://doi.org/10.1007/s10346-019-01146-2 Zhao B, Wang YS, Feng QQ, et al. (2020) Preliminary analysis of some characteristics of coseismic landslides induced by the Hokkaido Iburi-Tobu earthquake (September 5, 2018), Japan, Catena 189: 1–12. https://doi.org/10.1016/j.catena.2020.104502 Zhao B, Wang YS, Luo YH, et al. (2018) Landslides and dam damage resulting from the Jiuzhaigou earthquake (8 August 2017), Sichuan, China. Royal Society Open Science 5(3): 171418. https://doi.org/10.1098/rsos.171418 Zhou H, Liu HL, Kanamori H (1983) Source processes of large earthquakes along the Xianshuihe fault in southwestern China. Bulletin of the Seismological Society of America 73(2): 537–551.