Direction of Vorticity and a Refined Regularity Criterion for the Navier–Stokes Equations with Fractional Laplacian

Springer Science and Business Media LLC - Tập 21 - Trang 1-8 - 2019
Kengo Nakai1
1University of Tokyo, Tokyo, Japan

Tóm tắt

We give a refined regularity criterion for solutions of the three-dimensional Navier–Stokes equations with fractional dissipative term $$(-\Delta )^{\alpha /2}v$$ . The criterion is composed by the direction field of the vorticity and its magnitude simultaneously. Our result is a generalized of previous results by Beirão da Veiga and Berselli (Differ Integral Equ 15(3):345–356, 2002), and Zhou (ANZIAM J 46(3):309–316, 2005, Monatsh Math 144(3):251–257, 2005). Moreover, our result mentioned about the relation between the solution of the Navier–Stokes equations and the Euler equations.

Tài liệu tham khảo

Beirão da Veiga, H.: Vorticity and smoothness in viscous flows. In: Birman, M.S., Hildebrandt, S., Solonnikov, V.A., Uraltseva, N.N. (eds.) Nonlinear Problems in Mathematical Physics and Related Topics, II, Volume 2 of Int. Math. Ser. N. Y., pp. 61–67. Kluwer/Plenum, New York (2002) Beirão da Veiga, H., Berselli, L.C.: On the regularizing effect of the vorticity direction in incompressible viscous flows. Differ. Integral Equ. 15(3), 345–356 (2002) Beirão da Veiga, H., Giga, Y., Grujić, Z.: Vorticity Direction and Regularity of Solutions to the Navier–Stokes Equations. In: Giga, Y., Novotny, A. (eds.) Handbook of Mathematical Analysis in Mechanics of Viscous Fluids, pp. 901–932. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-10151-4_18-1 Calderón, A.P., Zygmund, A.: On singular integrals. Am. J. Math. 78, 289–309 (1956) Chae, D.: On the regularity conditions for the Navier–Stokes and related equations. Rev. Mat. Iberoam. 23(1), 371–384 (2007) Chorin, A.J.: The evolution of a turbulent vortex. Commun. Math. Phys. 83(4), 517–535 (1982) Constantin, P.: Geometric statistics in turbulence. SIAM Rev. 36(1), 73–98 (1994) Constantin, P., Fefferman, C.: Direction of vorticity and the problem of global regularity for the Navier–Stokes equations. Indiana Univ. Math. J. 42(3), 775–789 (1993) Fan, J., Ozawa, T.: On the regularity criteria for the generalized Navier–Stokes equations and Lagrangian averaged Euler equations. Differ. Integral Equ. 21(5–6), 443–457 (2008) Frisch, U., Sulem, P.L., Nelkin, M.: A simple dynamical model of intermittent fully developed turbulence. J. Fluid Mech. 87(4), 719–736 (1978) Ju, N.: The maximum principle and the global attractor for the dissipative 2D quasi-geostrophic equations. Commun. Math. Phys. 255(1), 161–181 (2005) Katz, N.H., Pavlović, N.: A cheap Caffarelli–Kohn–Nirenberg inequality for the Navier–Stokes equation with hyper-dissipation. Geom. Funct. Anal. 12(2), 355–379 (2002) Lions, J.L.: Quelques méthodes de résolution des problèmes aux limites non linéaires. Dunod; Gauthier-Villars, Paris (1969) Serrin, J.: The initial value problem for the Navier–Stokes equations. In: Nonlinear Problems (Proceedings of a Symposium, Madison, Wisconsin, 1962), pp. 69–98. University of Wisconsin Press, Madison, Wisconsin (1963) Stein, E.M.: Singular Integrals and Differentiability Properties of Functions. Princeton Mathematical Series, vol. 30. Princeton University Press, Princeton (1970) Tanahashi, M., Miyauchi, T., Ikeda, J.: Scaling law of coherent fine scale structure in homogeneous isotropic turbulence. In: Proceedings of 11th Symposium on Turbulence Shear Flows (1997) Triebel, H.: The Structure of Functions, Monographs in Mathematics, vol. 97. Birkhäuser Verlag, Basel (2001) Wu, J.: Generalized MHD equations. J. Differ. Equ. 195(2), 284–312 (2003) Zhou, Y.: Direction of vorticity and a new regularity criterion for the Navier–Stokes equations. ANZIAM J. 46(3), 309–316 (2005) Zhou, Y.: A new regularity criterion for the Navier–Stokes equations in terms of the direction of vorticity. Monatsh. Math. 144(3), 251–257 (2005) Zhou, Y.: Regularity criteria for the generalized viscous MHD equations. Ann. Inst. H. Poincaré Anal. Non Linéaire 24(3), 491–505 (2007)