Directed decision trees for generating complementary systems
Tài liệu tham khảo
Arslan, 1999, Selective training for hidden markov models with applications to speech classification, IEEE Trans. Speech Audio Process., 7, 46, 10.1109/89.736330
Breiman, 1996, Bagging predictors, Mach. Learn., 24, 123, 10.1007/BF00058655
Breiman, 2001, Random forests, Mach. Learn., 45, 5, 10.1023/A:1010933404324
Breslin, C., Gales, M., 2006. Generating complementary systems for speech recognition. In: Proc. ICSLP.
Breslin, C., Gales, M., 2007a. Building multiple complementary systems using directed decision trees. In: Proc. interspeech.
Breslin, C., Gales, M., 2007b. Generating complementary systems using directed decision trees. In: Proc. ICASSP.
Buckwalter, T., 2004. Buckwalter Arabic morphological analyzer version 2.0. LDC2004L02, Linguistic Data Consortium.
Cincarek, 2006, Utterance based selective training for the automatic creation of task dependent acoustic models, IEICE Trans. Info Systems, 89, 962, 10.1093/ietisy/e89-d.3.962
Dietterich, 1999, An experimental comparison of three methods for constructing ensembles of decision trees: bagging, boosting and randomization, Mach. Learn., 12, 1
Dietterich, 2000, Ensemble methods in machine learning, Lect. Notes Comput. Sci., 1857, 1, 10.1007/3-540-45014-9_1
Dimitrakakis, C., Bengio, S., 2004. Boosting HMMs with an application to speech. In: Proc. ICASSP.
Evermann, G., Woodland, P.C., 2000. Posterior probability decoding, confidence. In: Proc. Speech Transcription Workshop.
Fiscus, J., 1997. A post-processing system to yield reduced word error rates: recogniser output voting error reduction (ROVER). In: Proc. IEEE ASRU Workshop.
Freund, Y., Schapire, R., 1996. Experiments with a new boosting algorithm. In: Proc. of the 13th Internat. Conf. on Mach. Learn.
Gales, M., Diehl, F., Raut, C., Tomalin, M., Woodland, P., Yu, K., 2007. Development of a phonetic system for large vocabulary Arabic speech recognition. In: Proc. ASRU.
Gales, 2006, Progress in the CU-HTK broadcast news transcription system, IEEE Trans. Speech Audio Process., 14, 1513, 10.1109/TASL.2006.878264
Gauvain, 2002, The LIMSI broadcast news transcription system, Speech Comm., 37, 89, 10.1016/S0167-6393(01)00061-9
Gillick, L., Cox, S., 1989. Some statistical issues in the comparison of speech recognition algorithms.
Hain, T., Burget, L., Dines, J., Garau, G., Wan, V., Karafiat, M., Vepa, J., Lincoln, M., 2007. The AMI system for the transcription of speech in meetings.
Hoffmeister, B., Klein, T., Schluter, R., Ney, H., 2006. Frame based system combination and a comparison with weighted ROVER and CNC. In: Proc. ICSLP.
Hu, R., Zhao, Y., 2007. A Bayesian approach for phonetic decision tree state tying in conversational speech recognition. In: Proc. ICASSP.
Huang, J., Marcheret, E., Visweswariah, K., Libal, V., Potamianos, G., 2007. Detection, diarization and transcription of far-field lecture speech. In: Proc. Interspeech.
Hwang, M., Wang, W., Lei, X., Zheng, J., Cetin, O., Peng, G., 2007. Advances in Mandarin broadcast speech recognition.
Jiang, 2005, measures for speech recognition: a survey, Speech Comm., 45, 455, 10.1016/j.specom.2004.12.004
Kamm, T., Meyer, G., 2003.Word-selective training for speech recognition. In: Proc. IEEE Workshop on Automatic Speech Recognition and Understanding.
Kullback, 1951, On information and sufficiency, Ann. Math. Statist., 22, 79, 10.1214/aoms/1177729694
Lamel, 2002, Lightly supervised and unsupervised acoustic model training, Comp., Speech Lang, 10.1006/csla.2001.0186
Mangu,L., Brill, E., Stolke, A., 1999. Finding consensus among words: lattice-based word error minimization. In: Proc. Eurospeech.
Meyer, C., 2002. Utterance-level boosting of HMM speech recognisers. In: Proc. ICASSP.
Nguyen, 2002, Progress in transcription of broadcast news using Byblos, Comput., Speech Lang
Nock, H., Gales, M., Young, S., 1997. A comparative study of methods for phonetic decision-tree clustering. In: Proc. Eurospeech.
Odell, J., 1995. The use of context in large vocabulary speech recognition, Ph.D. thesis, University of Cambridge.
Povey, D., 2005. Discriminative training for large vocabulary speech recognition, Ph.D. thesis, University of Cambridge.
Ramabhadran, B., Siohan, O., Mangu, L., Zweig, G., Westphal, M., Schulz, H., Soneiro, A., 2006. The IBM 2006 speech transcription system for European parliamentary.
Rand, 1971, Objective criteria for the evaluation of clustering methods, J. Amer. Statist. Assoc., 66, 846, 10.2307/2284239
Schwenk, H., 1999. Using boosting to improve a hybrid hmm/neural-network speech recogniser. In: Proc. ICASSP.
Sinha, R., Gales, M., Kim, D., Liu, X., Sim, K., Woodland, P., 2006. The CU-HTK Mandarin broadcast news transcription system. In: Proc. ICASSP.
Siohan, O., Ramabhadran, B., Kingsbury, B., 2005. Constructing ensembles of ASR systems using randomized decision trees. In: Proc. ICASSP.
Stuker, S., Fugen, C., Burger, S., Wolfel, M., 2006. Cross-system adaptation and combination for continuous speech recognition: the influence of phoneme set and acoustic front-end. In: Proc. ICSLP.
Xue, J., Zhao, Y., 2007. Novel lookahead decision tree state tying for acoustic modelling. In: Proc. ICASSP.
Zhang, R., Rudnicky, A., 2004. A frame level boosting training scheme for acoustic modelling. In: Proc. ICSLP.
Zhang, R., Rudnicky, A.I., 2003. Improving the performance of an LVCSR system through ensembles of acoustic models. In: Proc. ICASSP.
Zweig, G., Padmanabhan,M., 2000. Boosting Gaussian mixtures in an LVCSR system. In: Proc. ICASSP.