Direct summands of direct sums of modules whose endomorphism rings have two maximal right ideals

Journal of Pure and Applied Algebra - Tập 215 - Trang 2209-2222 - 2011
Afshin Amini1, Babak Amini1, Alberto Facchini2
1Department of Mathematics, College of Sciences, Shiraz University, Shiraz 71454, Iran
2Dipartimento di Matematica Pura e Applicata, Università di Padova, 35121 Padova, Italy

Tài liệu tham khảo

Amini, 2008, Equivalence of diagonal matrices over local rings, J. Algebra, 320, 1288, 10.1016/j.jalgebra.2008.04.008 Anderson, 1992 Cohn, 1977, vol. 27 Diracca, 2002, Uniqueness of monogeny classes for uniform objects in abelian categories, J. Pure Appl. Algebra, 172, 183, 10.1016/S0022-4049(01)00160-8 Dung, 1998, Direct summand of serial modules, J. Pure Appl. Algebra, 133, 93, 10.1016/S0022-4049(97)00186-2 Facchini, 1996, Krull–Schmidt fails for serial modules, Trans. Amer. Math. Soc., 348, 4561, 10.1090/S0002-9947-96-01740-0 Facchini, 1998, vol. 167 Facchini, 2007, Representations of additive categories and direct-sum decompositions of objects, Indiana Univ. Math. J., 56, 659, 10.1512/iumj.2007.56.2865 Facchini, 2008, Injective modules, spectral categories, and applications, vol. 456, 1 Facchini, 2000, Projective modules over semilocal rings, vol. 259, 181 Facchini, 2006, Local morphisms and modules with a semilocal endomorphism ring, Algebr. Represent. Theory, 9, 403, 10.1007/s10468-006-9011-8 A. Facchini, P. Příhoda, Endomorphism rings with finitely many maximal right ideals, Comm. Algebra (2010) (in press). A. Facchini, P. Příhoda, The Krull–Schmidt theorem in the case two, Algebr. Represent. Theory (2010) (in press). Online first doi:10.1007/s10468-009-9202-1 2009. Facchini, 2004, Direct-sum decompositions of modules with semilocal endomorphism ring, J. Algebra, 274, 689, 10.1016/j.jalgebra.2003.06.004 Gabriel, 1966, Spektralkategorien und reguläre Ringe im Von-Neumannschen Sinn, Math. Z., 82, 389, 10.1007/BF01112218 Mac Lane, 1997 Mitchell, 1972, Rings with several objects, Adv. Math., 8, 1, 10.1016/0001-8708(72)90002-3 Příhoda, 2004, Weak Krull–Schmidt theorem and direct sum decompositions of serial modules of finite Goldie dimension, J. Algebra, 281, 332, 10.1016/j.jalgebra.2004.06.027