Direct splitting of water under visible light irradiation with an oxide semiconductor photocatalyst

Nature - Tập 414 Số 6864 - Trang 625-627 - 2001
Zhigang Zou1, Jinhua Ye2, Kazuhiro Sayama1, Hironori Arakawa1
1Photoreaction Control Research Center (PCRC), National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Japan
2Materials Engineering Laboratory (MEL), National Institute for Materials Science (NIMS), Tsukuba, Japan

Tóm tắt

Từ khóa


Tài liệu tham khảo

Honda, K. & Fujishima, A. Electrochemical photolysis of water at a semiconductor electrode. Nature 238, 37–38 (1972).

Kawai, T. & Sakata, T. Conversion of carbohydrate into hydrogen fuel by a photocatalytic process. Nature 286, 474–476 (1980).

Linsebigler, A. L., Lu, G. & Yates, J. T. Jr Photocatalysis on TiO2 surfaces: principles, mechanisms, and selected results. Chem. Rev. 95, 735–758 (1995).

Geoffrey, B. S. & Thomas, E. M. Visible light photolysis hydrogen using sensitized layered metal oxide semiconductors: the role of surface chemical modification in controlling back electron transfer reactions. J. Phys. Chem. B 101, 2508–2513 (1997).

Kim, Y. II., Salim, S., Huq, M. J. & Mallouk, T. E. Visible light photolysis of hydrogen iodide using sensitized layered semiconductor particles. J. Am. Chem. Soc. 113, 9561–9563 (1991).

Yoshimure, J., Ebina, Y., Kondo, J. & Domen, K. Visible light induced photocatalytic behavior of a layered perovskite type niobate, RbPb2Nb3O10. J. Phys. Chem. 97, 1970–1973 (1993).

Kudo, A. & Mikami, I. New In2O3(ZnO)m photocatalysts with laminal structure for visible light induced H2 or O2 evolution from aqueous solutions containing sacrificial reagents. Chem. Lett. 1027–1028 (1998).

Zou, Z., Ye, J. & Arakawa, H. Structural properties of InNbO4 and InTaO4: correlation with photocatalytic and photophysical properties. Chem. Phys. Lett. 332, 271–277 (2000).

Zou, Z., Ye, J. & Arakawa, H. Substitution effects of In3+ by Al3+ and Ga3+ on the photocatalytic and structural properties of the Bi2InNbO7 photocatalyst. Chem. Mater. 13, 1765–1769 (2001).

Kim, H. G., Hwang, D. W., Kim, J., Kim, Y. G. & Lee, J. Highly donor-doped (110) layered perovskite materials as novel photocatalysts for overall water splitting. Chem. Commun. 1077–1078 (1999).

Kudo, K. et al. Nickel-loaded K4Nb6O17 photocatalyst in the decomposition of H2O into H2 and O2: Structure and reaction mechanism. J. Catal. 120, 337–352 (1989).

Izumi, F. J. A software package for the Rietveld analysis of X-ray and neutron diffraction patterns. Crystallogr. Ass. Jpn 27, 23–31 (1985).

Machida, M., Yabunaka, J.-i. & Kijima, T. Synthesis and photocatalytic property of layered perovskite tantalates, RbLnTa2O7 (Ln = La, Pr, Nd, and Sm). Chem. Mater. 12, 812–817 (2000).

Kim, Y. II., Atherton, S., Brigham, E. S. & Mallouk, T. E. Sensitized layered metal oxide semiconductor particles for photochemical hydrogen evolution from nonsacrificial electron donors. J. Phys. Chem. 97, 11802–11810 (1993).

Dare-Edwards, M. P., Goodenough, J. B., Hammett, A. & Nicholson, N. D. Photoelectrochemistry of nickel (II) oxide. J. Chem. Soc. Faraday Trans. 77, 643–661 (1981).