Direct pulp capping in primary molars using a resin-modified Portland cement-based material (TheraCal) compared to MTA with 12-month follow-up: a randomised clinical trial
Tóm tắt
This study was to compare the success of resin-modified Portland cement-based material (TheraCal) with MTA in direct pulp capping (DPC) of primary molars. Symmetrical bilateral primary molars (92) from 46 healthy subjects aged 5–7 years were included in this split-mouth randomised clinical trial. DPC for small non-contaminated pulp exposures using either TheraCal or MTA were randomly performed in symmetrical molars. Thereafter, teeth were restored with amalgam. Clinical and radiographic evaluations were performed at 6 and 12 month follow-ups. Data were analysed using Chi square test at a significance level of 0.05. At the final follow-up session 74 teeth were available. After 12 months, the overall success rates for MTA and TheraCal were 94.5 and 91.8%, respectively. The difference between outcomes of the two groups was not statistically significant (P > 0.05). Within the limitations of the current study, radiographic and clinical findings revealed that TheraCal exhibited a comparable outcome to MTA in DPC of primary molars after 12 months.
Tài liệu tham khảo
Aminabadi NA, Huang B, Samiei M, Agheli S, Jamali Z, Shirazi S. A randomized trial using 3Mixtatin compared to MTA in primary molars with inflammatory root resorption: a novel endodontic biomaterial. J Clin Paediatr Dent. 2016;40(2):95–102.
Aminabadi NA, Parto M, Emamverdizadeh P, Jamali Z, Shirazi S. Pulp bleeding color is an indicator of clinical and histohematologic status of primary teeth. Clin Oral Invest. 2017;21(5):1831–41.
Asgary S, Kamrani FA, Taheri S. Evaluation of antimicrobial effect of MTA, calcium hydroxide, and CEM cement. Iran Endod J. 2008;2(3):105–9.
Asl Aminabadi N, Satrab S, Najafpour E, et al. A randomised trial of direct pulp capping in primary molars using MTA compared to 3Mixtatin: a novel pulp capping biomaterial. Int J Paediatr Dent. 2016;26(4):281–90.
Bortoluzzi EA, Niu L-n, Palani CD, et al. Cytotoxicity and osteogenic potential of silicate calcium cements as potential protective materials for pulpal revascularisation. Dent Mater. 2015;31(12):1510–22.
Camilleri J. Characterisation of hydration products of mineral trioxide aggregate. Int Endod J. 2008;41(5):408–17.
Camilleri J. Hydration characteristics of Biodentine and Theracal used as pulp capping materials. Dent Mater. 2014;30(7):709–15.
Cannon M, Gerodias N, Vieira A, Percinoto C, Jurado R. Primate pulpal healing after exposure and TheraCal application. J Clin Pediatr Dent. 2014;38(4):333–7.
Cengiz E, Yilmaz HG. Efficacy of erbium, chromium-doped: yttrium, scandium, gallium, and garnet laser irradiation combined with resin-based tricalcium silicate and calcium hydroxide on direct pulp capping: a randomised clinical trial. J Endod. 2016;42(3):351–5.
Cox C, Sübay R, Ostro E, Suzuki S, Suzuki S. Tunnel defects in dentin bridges: their formation following direct pulp capping. Oper Dent. 1995;21(1):4–11.
Dammaschke T. The history of direct pulp capping. J Hist Dent. 2007;56(1):9–23.
Dammaschke T, Leidinger J, Schäfer E. Long-term evaluation of direct pulp capping—treatment outcomes over an average period of 6.1 years. Clin Oral Investig. 2010;14(5):559–67.
Davidovich E, Wated A, Shapira J, Ram D. The influence of location of local anaesthesia and complexity/duration of restorative treatment on children’s behaviour during dental treatment. Pediatr Dent. 2013;35(4):333–6.
Formosa L, Mallia B, Camilleri J. A quantitative method for determining the anti washout characteristics of cement-based dental materials including mineral trioxide aggregate. Int Endod J. 2013;46(2):179–86.
Fuks AB. Pulp therapy for the primary and young permanent dentitions. Dent Clin N Am. 2000;44(3):571.
Gandolfi MG, Taddei P, Siboni F, et al. Development of the foremost light-curable calcium-silicate MTA cement as root-end in oral surgery. Chemical–physical properties, bioactivity and biological behaviour. Dent Mater. 2011;27(7):e134–e57.
Gandolfi M, Siboni F, Prati C. Chemical–physical properties of TheraCal, a novel light-curable MTA-like material for pulp capping. Int Endod J. 2012;45(6):571–9.
Ghajari MF, Jeddi TA, Iri S, Asgary S. Direct pulp-capping with calcium enriched mixture in primary molar teeth: a randomised clinical trial. Iran Endod J. 2010;5(1):27–30.
Ghajari MF, Jeddi TA, Iri S, Asgary S. Treatment outcomes of primary molars direct pulp capping after 20 months: a randomised controlled trial. Iran Endod J. 2013;8(4):149–52.
Gong V, Franca R. Nanoscale chemical surface characterization of four different types of dental pulp-capping materials. J Dent. 2017;58:11–8.
Ha WN, Kahler B, Walsh LJ. Clinical manipulation of mineral trioxide aggregate: lessons from the construction industry and their relevance to clinical practice. J Can Dent Assoc. 2015;81:f4.
Hebling J, Lessa F, Nogueira I, Carvalho RMD, Costa C. Cytotoxicity of resin-based light-cured liners. Am J Dent. 2009;22(3):137–42.
Hilton T, Ferracane J, Mancl L. Dentistry NP-bRCiE-b. Comparison of CaOH with MTA for direct pulp capping a PBRN randomised clinical trial. J Dent Res. 2013;92(suppl.no.1):16s–22s.
Kennedy D, Kapala J. The dental pulp: biological considerations of protection and treatment. Text book of pediatric dentistry. Baltimore: Williams&Wilkins. 1985.
Komabayashi T, Qiang Z, Eberhart R. Current status of direct pulp-capping materials for permanent teeth. Dent Mater J. 2016;35(1):1–12.
Lee H, Shin Y, Kim S-O, et al. Comparative study of pulpal responses to pulpotomy with ProRoot MTA, RetroMTA, and TheraCal in Dogs’ teeth. J Endod. 2015;41(8):1317–24.
Liang C, SUH BI. Cytotoxicity and biocompatibility of resin-free and resin-modified direct pulp capping materials: a state-of-the-art review. Dent Mater J. 2017;36(1):1–7.
Nielsen M, Casey J, VanderWeele R, Vandewalle K. Mechanical properties of new dental pulp-capping materials. Gen Dent. 2015;64(1):44–8.
Parirokh M, Torabinejad M. Mineral trioxide aggregate: a comprehensive literature review—part I: chemical, physical, and antibacterial properties. J Endod. 2010a;36(1):16–27.
Parirokh M, Torabinejad M. Mineral trioxide aggregate: a comprehensive literature review—part III: clinical applications, drawbacks, and mechanism of action. J Endod. 2010b;36(3):400–13.
Petrolo F, Comba A, Scansetti M, et al. Effects of light-cured MTA like material on direct pulp capping. Dent Mater. 2014;30:e151.
Poggio C, Arciola CR, Beltrami R, et al. Cytocompatibility and antibacterial properties of capping materials. Sci World J 2014;2014:1–10.
Poggio C, Ceci M, Dagna A, et al. In vitro cytotoxicity evaluation of different pulp capping materials: a comparative study. Arh Hig Rada Toksikol. 2015;66(3):181–8.
Ranjkesh B, Isidor F, Dalstra M, Løvschall H. Diametral tensile strength of novel fast-setting calcium silicate cement. Dent Mater J. 2016;35(4):559–63.
Sarkar N, Caicedo R, Ritwik P, Moiseyeva R, Kawashima I. Physicochemical basis of the biologic properties of mineral trioxide aggregate. J Endod. 2005;31(2):97–100.
Sluyk S, Moon P, Hartwell G. Evaluation of setting properties and retention characteristics of mineral trioxide aggregate when used as a furcation perforation repair material. J Endod. 1998;24(11):768–71.
Tomson PL, Grover LM, Lumley PJ, et al. Dissolution of bio-active dentine matrix components by mineral trioxide aggregate. J Dent. 2007;35(8):636–42.
Tuna D, Ölmez A. Clinical long-term evaluation of MTA as a direct pulp capping material in primary teeth. Int Endod J. 2008;41(4):273–8.
Tüzüner T, Alacam A, Altunbas D, Gokdogan F, Gundogdu E. Clinical and radiographic outcomes of direct pulp capping therapy in primary molar teeth following haemostasis with various antiseptics: a randomised controlled trial. Eur J Paediatr Dent. 2012;13(4):289–92.