Direct navigated laser photocoagulation as primary treatment for retinal arterial macroaneurysms

Dmitrii S. Maltsev1, Alexei N. Kulikov1, Bhushan Uplanchiwar2, Luiz H. Lima3, Jay Chhablani2
1Department of Ophthalmology, Military Medical Academy, St Petersburg, Russia
2Smt. Kanuri Santhamma Retina Vitreous Centre, L.V. Prasad Eye Institute, Hyderabad, India
3Department of Ophthalmology, Federal University of São Paulo, São Paulo, Brazil

Tóm tắt

To compare the efficacy and safety of conventional and navigated laser photocoagulation as the primary treatment option for retinal arteriolar macroaneurysm (RAM). Eleven (9 male and 2 females, mean age 65.1 ± 12.1 years) and 17 (13 male and 4 females, mean age 66.2 ± 8.9 years) patients were included in conventional laser photocoagulation (CLP) and navigated laser photocoagulation (NLP) groups, respectively. The primary outcome measures were LogMAR best-corrected visual acuity (BCVA) and central retinal thickness at the end of the follow-up. The secondary outcome measure was total laser energy applied during the procedure. At the end of the mean follow-up of 11.4 ± 4.0 months, baseline LogMAR BCVA increased significantly from 0.65 ± 0.14 to 0.26 ± 0.12 (p < 0.001) in CLP group and from 0.57 ± 0.33 to 0.29 ± 0.34 (p < 0.001) in NLP group. Central retinal thickness decreased significantly from 514.5 ± 53.2 µm to 295.3 ± 11.3 µm (p < 0.001) and from 494.0 ± 111.2 µm to 285.8 ± 51.4 µm (p < 0.001) in CLP and NLP group, respectively. Total laser energy and number of laser burns applied per procedure in NLP group was statistically significantly lower than in CLP group (0.28 ± 0.13 J vs 0.59 ± 0.06 J, p < 0.001 and 28.5 ± 14.2 burns vs 48.9 ± 5.1 burns, respectively, p < 0.001). No adverse events related to laser treatment was noted in study groups during the follow-up. This study demonstrated superiority of navigated laser photocoagulation compared to conventional laser photocoagulation in primary treatment of RAM which results from similar efficacy and safety of both techniques with lower mean total laser energy and number of laser burns required for navigated laser photocoagulation.

Tài liệu tham khảo

Panton RW, Goldberg MF, Farber MD. Retinal arterial macroaneurysms: risk factors and natural history. Br J Ophthalmol. 1990;74(10):595–600. Cousins SW, Flynn HW Jr, Clarkson JG. Macroaneurysms associated with retinal branch vein occlusion. Am J Ophthalmol. 1990;109(5):567–70. Abdel-Khalek MN, Richardson J. Retinal macroaneurysm: natural history and guidelines for treatment. Br J Ophthalmol. 1986;70(1):2–11. Hughes EL, Dooley IJ, Kennelly KP, Doyle F, Siah WF, Connell P. Angiographic features and disease outcomes of symptomatic retinal arterial macroaneurysms. Graefes Arch Clin Exp Ophthalmol. 2016;254(11):2203–7. Erol MK, Dogan B, Coban DT, Toslak D, Cengiz A, Ozel D. Intravitreal ranibizumab therapy for retinal arterial macroaneurysm. Int J Clin Exp Med. 2015;8(7):11572–8. Laovirojjanakul W, Sanguansak T, Yospaiboon Y, Sinawat S, Sinawat S. Laser-induced choroidal neovascularizations: clinical study of 3 cases. Case Rep Ophthalmol. 2017;8(2):429–35. Maeshima K, Utsugi-Sutoh N, Otani T, Kishi S. Progressive enlargement of scattered photocoagulation scars in diabetic retinopathy. Retina. 2004;24(4):507–11. Parodi MB, Iacono P, Ravalico G, Bandello F. Subthreshold laser treatment for retinal arterial macroaneurysm. Br J Ophthalmol. 2011;95(4):534–8. Boyko EV, Mal’tsev DS. En face’ optical coherence tomography guided focal navigated laser photocoagulation [In Russian]. Vestn Oftalmol. 2016;132(3):56–60. Kozak I, El-Emam SY, Cheng L, Bartsch DU, Chhablani J, Freeman WR, Arevalo JF. Fluorescein angiography versus optical coherence tomography-guided planning for macular laser photocoagulation in diabetic macular edema. Retina. 2014;34(8):1600–5. Chhablani J, Rani PK, Mathai A, Jalali S, Kozak I. Navigated focal laser photocoagulation for central serous chorioretinopathy. Clin Ophthalmol. 2014;8:1543–7. Boiko EV, Maltsev DS. Retro-mode scanning laser ophthalmoscopy planning for navigated macular laser photocoagulation in macular edema. J Ophthalmol. 2016;2016:3726353. Kozak I, Oster SF, Cortes MA, Dowell D, Hartmann K, Kim JS, Freeman WR. Clinical evaluation and treatment accuracy in diabetic macular edema using navigated laser photocoagulator NAVILAS. Ophthalmology. 2011;118(6):1119–24. Kernt M, Cheuteu R, Vounotrypidis E, Haritoglou C, Kampik A, Ulbig MW, Neubauer AS. Focal and panretinal photocoagulation with a navigated laser (NAVILAS®). Acta Ophthalmol. 2011;89(8):e662–4. Kernt M, Cheuteu RE, Cserhati S, Seidensticker F, Liegl RG, Lang J, Haritoglou C, Kampik A, Ulbig MW, Neubauer AS. Pain and accuracy of focal laser treatment for diabetic macular edema using a retinal navigated laser (Navilas). Clin Ophthalmol. 2012;6:289–96. Cahuzac A, Scemama C, Mauget-Faÿsse M, Sahel JA, Wolff B. Retinal arterial macroaneurysms: clinical, angiographic, and tomographic description and therapeutic management of a series of 14 cases. Eur J Ophthalmol. 2016;26(1):36–43. Brown DM, Sobol WM, Folk JC, Weingeist TA. Retinal arteriolar macroaneurysms: long-term visual outcome. Br J Ophthalmol. 1994;78(7):534–8. Abid F, Sellami D, Ben Yahia S, Gargouri S, Ammous D, Khairallah M, Feki J. Early treatment with Nd-YAG laser for a premacular hemorrhage secondary to a retinal macroaneurysm. J Fr Ophtalmol. 2017;40(1):e11–3. Chen Y, Chen SD, Chen FK. Branch retinal vein occlusion secondary to a retinal arteriolar macroaneurysm: a novel mechanism supported by multimodal imaging. Retin Cases Brief Rep. 2017 Jan 10. [Epub ahead of print]. Terubayashi Y, Kida T, Fukumoto M, Sugasawa J, Morishita S, Suzuki H, Ikeda T. Long-term follow-up case of multiple retinal arterial macroaneurysms developing branch retinal vein occlusion following ruptured macroaneurysm. Case Rep Ophthalmol. 2016;7(1):243–8. Matsumoto H, Sato T, Kishi S. Outer nuclear layer thickness at the fovea determines visual outcomes in resolved central serous chorioretinopathy. Am J Ophthalmol. 2009;148(1):105–10. Shin HJ, Lee SH, Chung H, Kim HC. Association between photoreceptor integrity and visual outcome in diabetic macular edema. Graefes Arch Clin Exp Ophthalmol. 2012;250(1):61–70. Boiko EV, Maltsev DS. Quantitative optical coherence tomography analysis of retinal degenerative changes in diabetic macular edema and neovascular age-related macular degeneration. Retina. 2018;38(7):1324–30. Osaka R, Shiragami C, Ono A, Kobayashi M, Takasago Y, Yamashita A, Tsujikawa A. Clinical features of treated and untreated type 1 idiopathic macular telangiectasia without the occurrence of secondary choroidal neovascularization followed for 2 years in japanese patients. Retina. 2017 May 24. [Epub ahead of print]. Mansour AM, Ashraf M, Charbaji A, Younis MH, Souka AA, Dogra A, Mansour HA, Chhablani J. Ziv-aflibercept study group investigators. Two-year outcomes of intravitrealziv-aflibercept. Br J Ophthalmol. 2018. [Epub ahead of print]. Rabb MF, Gagliano DA, Teske MP. Retinal arterial macroaneurysms. Surv Ophthalmol. 1988;33(2):73–96. Palestine AG, Robertson DM, Goldstein BG. Macroaneurysms of the retinal arteries. Am J Ophthalmol. 1982;93(2):164–71. Rabb MF, Gagliano DA, Teske MP. Retinal arterial macroaneurysms. Surv Ophthalmol. 1988;33(2):73–96.