Direct methods for primary decomposition

Inventiones mathematicae - Tập 110 Số 1 - Trang 207-235 - 1992
David Eisenbud1, Craig Huneke2, Wolmer V. Vasconcelos3
1Department of Mathematics, Brandeis University, 02254, Waltham, MA, USA
2Department of Mathematics, Purdue University, 47907, West Lafayette, IN, USA
3Rutgers University, 08903, New Brunswick, NJ, USA

Tóm tắt

Từ khóa


Tài liệu tham khảo

Avramov, L.: Homology of local flat extensions and complete intersection defects. Math. Ann.228, 27?37 (1977)

Bayer, D.: The division algorithm and the Hilbert scheme. Thesis, Harvard University, 1982. Order number 82-22588, Univ. Microfilms Intl., Ann Arbor Michigan (1982)

Bayer, D., Galligo, A., Stillman, M.: Computing primary decompositions (in preparation)

Bayer, D., Stillman, M.: Macaulay: A system for computation in algebraic geometry and commutative algebra. Source and object code available for Unix and Macintosh computers. Contact the authors, or download from zariski. harvard. edu via anonymous ftp. (login: anonymous, password: any, cd Macaulay) (1982?1990)

Bayer, D., Stillman, M.: A criterion for detectingm-regularity. Invent. Math.87, 1?11 (1987)

Bayer, D., Stillman, M.: Computation of Hilbert functions. J. Symb. Comput.14, 31?50 (1992)

Bayer, D., Mumford, D.: What can be computed in algebraic geometry? In: Eisenbud, D., Robbiano, L. (eds.), Proceedings of the Cortona conference on computational algebraic geometry Cambridge: Cambridge University Press 1993

Bertram, A., Ein L., Lazarsfeld R.: Vanishing theorems, a theorem of Severi, and the equations defining projective varieties, (preprint)

Brennan, J.P., Vasconcelos, W.: Effective computation of the integral closure of a morphism. J. Pure Appl. Alg. (to appear)

Buchsbaum, D.A., Eisenbud, D.: What makes a complex exact? J. Algebra25, 259?268 (1973)

Buchsbaum, D.A., Eisenbud, D.: Some structure theorems for finite free resolutions. Adv. Math.12, 84?139 (1974)

Buchsbaum, D.A., Eisenbud, D.: What annihilates a module. J. Algebra47, 231?243 (1977)

Cox, D., Little, J., O'Shea, D.: Ideals, varieties and algorithms. Berlin Heidelberg New York: Springer 1992

Eisenbud, D.: Commutative algebra with a view toward algebraic geometry. (Brandeis Lect. Notes. 1989)

Eisenbud, D., Levine, H.: An algebraic formula for the degree of aC ? map germ. Ann. Math.106, 19?44 (1977)

Eisenbud, D., Stillman, M.: Methods in comp algebraic geometry and commutative algebra (in preparation)

Eisenbud, D., Sturmfels, B.: Finding sparse systems of parameters. (in preparation)

Gianni, P., Trager, B., Zacharias, G.: Gröbner bases and primary decomposition of polynomials ideals. J. Symb. Comput6, 149?167 (1988)

Grothendieck, A., Dieudonné, J.: Éléments de géométrie algébrique IV. Publ. Math., Inst. Hautes Étud. Sci.32 (1967)

Gruson, L., Lazarsfeld, R., Peskine, C.: On a theorem of Castelnuovo and the equations defining space curves. Invent Math.72, 491?506 (1983)

Hartshorne, R.: Algebraic geometry. Berlin Heidelberg New York: Springer 1977

Hermann, G.: Die Frage der endlich vielen Schritte in der Theorie der Polynomideale. Math. Ann.95, 736?788 (1926)

Hilbert, D.: Über die Theorie der algebraischer Formen. Math. Ann.36, 473?534 (1890)

Hironaka, H.: Resolution of singularities of an algebraic variety over a field of characteristic 0. Ann. Math.79, 205?326 (1964)

Hochster, M.: Symbolic powers in Noetherian domains. Ill. J. Math.15, 9?27 (1971)

Kaplansky, I.: Commutative Rings. Boston: Allyn and Bacon 1970

Knuth, D.: The art of computer programming vol. 2: Seminumerical algorithms. Reading: Addison-Wesley 1971

Krick, T., Logar, A.: An algorithm for the computation of the radical of an ideal in the ring of polynomials. In: Mattson, H.F. et al. (eds.) Proceedings 9th AAEEC. (Lect. Notes Comput. Sci., vol. 539, pp. 195?205) Berlin Heidelberg New York: Springer 1991

Kunz, E.: Kähler Differentials. Wiesbaden: Viehweg 1986

Lazard, D.: Ideal bases and primary decomposition: case of two variables. J. Symb. Comput. 261?270 (1985)

Lazard, D.: Commutative algebra and computer algebra. (Lect. Notes Comput. Sci., vol. 144, pp. 40?48) Berlin Heidelberg New York: Springer 1982

Lazard, D.: Solving zero-dimensional algebraic systems. J. Symb. Comput. (to appear)

Lazarsfeld, R.: A sharp Castelnuovo bound for smooth surfaces. Duke Math. J.55, 423?429 (1987)

Matsumura, H.: Commutative algebra. New York: Benjamin 1970

Matsumura, H.: Commutative ring theory. Cambridge: Cambridge University Press 1986

Mumford, D.: Varieties defined by quadratic equations. In: Proceedings, of the conference at the Centro Int. Mat. Estivo (CIME). Varenna 1969. Rome: Cremonese 1970

Nagata, M.: Local rings. New York: Interscience 1962

Northcott, D.G.: A homological investigation of a certain residual ideal. Math. Ann.150, 99?110 (1963)

Peskine, C., Szpiro, L.: Liaison des variétés algébriques I. Invent. Math.26, 271?302 (1974)

Vasconcelos, W.: Computing the integral closure of an affine domain. Proc. Am. Math. Soc.113, 633?638 (1991)

Scheja, G., Storch, U.: Über Spurfunktionen bei vollständigen Durchschnitten, J. Reine Angew. Math.278, 157?170 (1975)

Seidenberg, A.: On the Lasker-Noether decomposition theorem. Am. J. Math.106, 611?638 (1984)