Direct methods for primary decomposition
Tóm tắt
Từ khóa
Tài liệu tham khảo
Avramov, L.: Homology of local flat extensions and complete intersection defects. Math. Ann.228, 27?37 (1977)
Bayer, D.: The division algorithm and the Hilbert scheme. Thesis, Harvard University, 1982. Order number 82-22588, Univ. Microfilms Intl., Ann Arbor Michigan (1982)
Bayer, D., Galligo, A., Stillman, M.: Computing primary decompositions (in preparation)
Bayer, D., Stillman, M.: Macaulay: A system for computation in algebraic geometry and commutative algebra. Source and object code available for Unix and Macintosh computers. Contact the authors, or download from zariski. harvard. edu via anonymous ftp. (login: anonymous, password: any, cd Macaulay) (1982?1990)
Bayer, D., Mumford, D.: What can be computed in algebraic geometry? In: Eisenbud, D., Robbiano, L. (eds.), Proceedings of the Cortona conference on computational algebraic geometry Cambridge: Cambridge University Press 1993
Bertram, A., Ein L., Lazarsfeld R.: Vanishing theorems, a theorem of Severi, and the equations defining projective varieties, (preprint)
Brennan, J.P., Vasconcelos, W.: Effective computation of the integral closure of a morphism. J. Pure Appl. Alg. (to appear)
Buchsbaum, D.A., Eisenbud, D.: Some structure theorems for finite free resolutions. Adv. Math.12, 84?139 (1974)
Cox, D., Little, J., O'Shea, D.: Ideals, varieties and algorithms. Berlin Heidelberg New York: Springer 1992
Eisenbud, D.: Commutative algebra with a view toward algebraic geometry. (Brandeis Lect. Notes. 1989)
Eisenbud, D., Levine, H.: An algebraic formula for the degree of aC ? map germ. Ann. Math.106, 19?44 (1977)
Eisenbud, D., Stillman, M.: Methods in comp algebraic geometry and commutative algebra (in preparation)
Eisenbud, D., Sturmfels, B.: Finding sparse systems of parameters. (in preparation)
Gianni, P., Trager, B., Zacharias, G.: Gröbner bases and primary decomposition of polynomials ideals. J. Symb. Comput6, 149?167 (1988)
Grothendieck, A., Dieudonné, J.: Éléments de géométrie algébrique IV. Publ. Math., Inst. Hautes Étud. Sci.32 (1967)
Gruson, L., Lazarsfeld, R., Peskine, C.: On a theorem of Castelnuovo and the equations defining space curves. Invent Math.72, 491?506 (1983)
Hermann, G.: Die Frage der endlich vielen Schritte in der Theorie der Polynomideale. Math. Ann.95, 736?788 (1926)
Hironaka, H.: Resolution of singularities of an algebraic variety over a field of characteristic 0. Ann. Math.79, 205?326 (1964)
Hochster, M.: Symbolic powers in Noetherian domains. Ill. J. Math.15, 9?27 (1971)
Kaplansky, I.: Commutative Rings. Boston: Allyn and Bacon 1970
Knuth, D.: The art of computer programming vol. 2: Seminumerical algorithms. Reading: Addison-Wesley 1971
Krick, T., Logar, A.: An algorithm for the computation of the radical of an ideal in the ring of polynomials. In: Mattson, H.F. et al. (eds.) Proceedings 9th AAEEC. (Lect. Notes Comput. Sci., vol. 539, pp. 195?205) Berlin Heidelberg New York: Springer 1991
Lazard, D.: Ideal bases and primary decomposition: case of two variables. J. Symb. Comput. 261?270 (1985)
Lazard, D.: Commutative algebra and computer algebra. (Lect. Notes Comput. Sci., vol. 144, pp. 40?48) Berlin Heidelberg New York: Springer 1982
Matsumura, H.: Commutative algebra. New York: Benjamin 1970
Matsumura, H.: Commutative ring theory. Cambridge: Cambridge University Press 1986
Mumford, D.: Varieties defined by quadratic equations. In: Proceedings, of the conference at the Centro Int. Mat. Estivo (CIME). Varenna 1969. Rome: Cremonese 1970
Nagata, M.: Local rings. New York: Interscience 1962
Northcott, D.G.: A homological investigation of a certain residual ideal. Math. Ann.150, 99?110 (1963)
Vasconcelos, W.: Computing the integral closure of an affine domain. Proc. Am. Math. Soc.113, 633?638 (1991)
Scheja, G., Storch, U.: Über Spurfunktionen bei vollständigen Durchschnitten, J. Reine Angew. Math.278, 157?170 (1975)