Direct measurements of interfacial shear strength of multi-walled carbon nanotube/PEEK composite using a nano-pullout method

Composites Science and Technology - Tập 71 - Trang 1295-1300 - 2011
Terumasa Tsuda1, Toshio Ogasawara2, Fei Deng1, Nobuo Takeda1
1Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5, Kashiwanoha, Kashiwa-shi, Chiba 277-8561, Japan
2Advanced Composite Center, Aerospace Research and Development Directorate, Japan Aerospace Exploration Agency (JAXA), 6-13-1, Osawa, Mitaka-shi, Tokyo 181-0015, Japan

Tài liệu tham khảo

Iijima, 1991, Helical microtubes of graphic carbon, Nature, 354, 56, 10.1038/354056a0 Krishman, 1998, Young’s modulus of single-walled carbon nanotubes, J Appl Phys, 84, 1939, 10.1063/1.368323 Salvetat, 1999, Mechanical properties of carbon nanotubes, Appl Phys A, 69, 255, 10.1007/s003390050999 Demcayk, 2002, Direct mechanical measurement of the tensile strength and elastic modulus of multiwalled carbon nanotubes, Mater Sci Eng A, 334, 173, 10.1016/S0921-5093(01)01807-X Lee, 1997, Conductivity enhancement in single-walled carbon nanotube bundles doped with K and Br, Nature, 388, 255, 10.1038/42206 Tans, 1997, Individual single-wall carbon nanotubes as quantum devices, Nature, 386, 474, 10.1038/386474a0 Maruyama, 2002, A molecular dynamics simulation of heat conduction of finite length SWNTs, Physica B, 323, 193, 10.1016/S0921-4526(02)00898-0 Maruyama, 2003, A molecular dynamics simulation of heat conduction of a finite length single-walled carbon nanotube, Micro Thermophys Eng, 7, 41, 10.1080/10893950390150467 Thostenson, 2005, Nano composites in context, Compos Sci Technol, 65, 491, 10.1016/j.compscitech.2004.11.003 Thostenson, 2001, Advances in the science and technology of carbon nanotubes and their composites: a review, Compos Sci Technol, 61, 1899, 10.1016/S0266-3538(01)00094-X Coleman, 2006, Small but strong: a review of the mechanical properties of carbon nanotube–polymer composites, Carbon, 44, 1624, 10.1016/j.carbon.2006.02.038 Moniruzzaman, 2006, Polymer nanocomposites containing carbon nanotubes, Macromolecules, 39, 5194, 10.1021/ma060733p Breuer, 2004, Big returns from small fibers: a review of polymer/carbon nanotube composites, Polymer Comp, 25, 630, 10.1002/pc.20058 Coleman, 2006, Mechanical reinforcement of polymers using carbon nanotubes, Adv Mater, 18, 689, 10.1002/adma.200501851 Lau, 2006, A critical review on nanotube and nanotube/nanoclay related polymer composite, Comp Part B, 37, 425, 10.1016/j.compositesb.2006.02.020 Schadler, 1998, Load transfer in carbon nanotube epoxy composites, Appl Phys Lett, 73, 3842, 10.1063/1.122911 Deng, 2007, Tensile properties at different temperature and observation of micro deformation of carbon nanotubes–poly (ether ether ketone) composites, Compos Sci Technol, 67, 2959, 10.1016/j.compscitech.2007.05.014 Qian, 2000, Load transfer and deformation mechanisms in carbon nanotube–polystyrene composites, Appl Phys Lett, 76, 2868, 10.1063/1.126500 Halpin, 1976, The halpin-tsai equations: a review, Polym Eng Sci, 16, 344, 10.1002/pen.760160512 Sanvito, 2000, Fractional quantum conductance in carbon nanotubes, Phys Rev Lett, 84, 1974, 10.1103/PhysRevLett.84.1974 Frankland, 2002, Molecular simulation of the influence of chemical cross-links on the shear strength of carbon nanotube-polymer interfaces, J Phys Chem B, 106, 3046, 10.1021/jp015591+ Wong, 2003, Physical interactions at carbon nanotube–polymer interface, Polymer, 44, 7757, 10.1016/j.polymer.2003.10.011 Liao, 2001, Interfacial characteristics of a carbon nanotube–polystyrene composite system, Appl Phys Lett, 79, 4225, 10.1063/1.1428116 Barber, 2003, Measurement of carbon nanotube–polymer interfacial strength, Appl Phys Lett, 82, 4140, 10.1063/1.1579568 Barber, 2004, Interfacial fracture energy measurements for multi-walled carbon nanotubes pulled from a polymer matrix, Compos Sci Technol, 64, 2283, 10.1016/j.compscitech.2004.01.023 Cooper, 2002, Detachment of nanotubes from polymer matrix, Appl Phys Lett, 81, 3873, 10.1063/1.1521585 Ding, 2007, Modulus, fracture strength, and brittle vs. plastic response of the shell of arc-grown multi-walled carbon nanotubes, Exp Mech, 47, 25, 10.1007/s11340-006-9344-6 Deng F, Ogasawara T, Takeda N. Pull-out testing for individual MWCNT and functionalized MWCNT. In: Proceedings US–Japan conference on composite materials; 2008 [CD-ROM]. Nishijima, 1999, Carbon-nanotube tips for scanning probe microscopy: preparation by a controlled process and observation of deoxyribonucleic acid, Appl Phys Lett, 74, 4061, 10.1063/1.123261 Nishio, 2005, Density of electron-beam-induced amorphous carbon deposites, J Vac Sci Technol B, 23, 1975, 10.1116/1.2037687 Peng, 2008, Measurements of near-ultimate strength for multiwalled carbon nanotubes and irradiation-induced crosslinking improvements, Nature nanotech, 3, 626, 10.1038/nnano.2008.211 Hull, 1996 Kelly, 1965, Tensile properties of fibre-reinforced metals: copper/tungsten and copper/molybdenum, J Mech Phys Solids, 13, 329, 10.1016/0022-5096(65)90035-9 Gao, 2005, A shear–lag model for carbon nanotube-reinfoced polymer composites, Int J Solids Struct, 42, 1649, 10.1016/j.ijsolstr.2004.08.020 Ogasawara, 2011, Stress–strain behavior of multi-walled carbon nanotube/PEEK composites, Compos Sci Tech, 71, 73, 10.1016/j.compscitech.2010.10.001 Wagner, 1998, Stress-induced fragmentation of multiwall carbon nanotubes in a polymer matrix, Appl Phys Lett, 72, 188, 10.1063/1.120680 Roy, 2010, Measurement interfacial shear strength in single wall carbon nanotubes reinforced composite using Raman spectroscopy, J Appl Phys, 107, 043501, 10.1063/1.3295907