Direct experimental evidence for flow induced fibrous polymer crystallisation occurring at a solid/melt interface

Journal of Materials Science - Tập 35 - Trang 5247-5253 - 2000
M. R. Mackley1, G. D. Moggridge1, O. Saquet1
1Department of Chemical Engineering, University of Cambridge, Cambridge, UK

Tóm tắt

We report experimental observations on the way that flowing polyethylene melts can crystallise within a processing channel geometry. Using a recently developed Multipass Rheometer (MPR), we present rheological, rheo-optic and coupled X-ray data that follow the evolution of crystallisation, as molten polyethylene flows into a slit geometry. Optical observations show that fibrous crystallisation occurs initially at the walls of the slit and not, as expected, in the entrance region to the slit. The coupled X-ray, rheology and rheo-optic data lead us to speculate that a coil-stretch transition of the polymer chains occurs at the wall of the slit and this acts as the primary cause of fibrous X-ray nucleation. At high wall shear rates we identify evidence to suggest that slip occurs between the flowing polymer and the solid wall and this in turn causes the onset of fibrous crystallisation to be surpressed. The experimental observations are generally consistent with certain theoretical predictions made by Brochard and de Gennes.

Tài liệu tham khảo

M. Doi and S. F. Edwards, “The Theory of Polymer Dynamics” (Oxford, 1986). J. Dealy and K. Wissbrun, “Melt Rheology and its Role in Plastics Processing” (Van Nostrand Reinhold, NY, 1990). T. C. B. Mcleish and S. T. Milner,Adv in Polymer Science 143 (1999) 195. A. K. Douflas, I. S. Dairanieh and A. J. McHUGH,J Rheology 43(1) (1999) 85. G. Eder and H. Janeschitz-Kreigl, “Crystallisation Material Science and Technology, Vol. 18,” edited by H. E. H. Meijer (Wiley, VCH, 1997) p. 269. A. Peterlin,Pure & Applied Chemistry 12 (1966) 563. A. Ziabicki and K. Kedzierska,J of Applied Polymer Science 2(4) (1959) 14. J. W. H. Kolnaar and A. Keller,Polymer 35(18) (1994) 3863. M. R. Mackley and A. Keller,ibid. 14 (1973) 16. M. R. Mackley, R. T. J. Marshall and J. B. A. F. Smeulders,Journal of Rheology 39(6) (1995) 1293. O. Saquet, M. R. Mackley and G. D. Moggridge, in Proceedings of the Fourth Italian Conference on Chemical and Process Engineering, Florence, May 2-5, 1999, p. 809. M. Ranganthan, M. R. Mackley and P. H. J. Spittler,J Rheology 43(2) (1999) 443. A. K. van der VEGT and P. P. A SMITH,Advances in Polymer Sci & Technology. Soc. Chem. Ind. S.C.I. Monograph 26 (1967) 313. J. L. S. Wales, “The Application of Flow Birefringence to Rheological Studies of Polymer Melts” (Technische Hogeschool Delft, The Netherlands, 1976). G. G. Fuller, “Optical Rheometry of Complex Fluids” (Oxford University Press, 1995). F. Brochard and P. G. de GENNES,Langmuir 8 (1992) 3033. A. Zwijnenburg and A. J. Pennings,Colloid & Polymer Science 254 (1976) 868. S. Q. Wang, P. A. Drda and Y. W. Inn,J Rheology 40(5) (1996) 875. X. Yang, H. Ishida and S. Q. Wang,ibid. 42(1) (1998) 63. D. G. Crowley, F. C. Frank, M. R. Mackley and R. C. Stephenson,Journal of Polymer Science A2(14) (1976) 1111. S. P. Carrington and J. A. Odell,Journal of Non Newtonian Fluid Mechanics 67 (1996) 269.