Direct evidence for the pancreatic lineage: NGN3+ cells are islet progenitors and are distinct from duct progenitors
Tóm tắt
The location and lineage of cells that give rise to endocrine islets during embryogenesis has not been established nor has the origin or identity of adult islet stem cells. We have employed an inducible Cre-ERTM-LoxP system to indelibly mark the progeny of cells expressing either Ngn3 or Pdx1 at different stages of development. The results provide direct evidence that NGN3+ cells are islet progenitors during embryogenesis and in adult mice. In addition, we find that cells expressing Pdx1 give rise to all three types of pancreatic tissue: exocrine, endocrine and duct. Furthermore, exocrine and endocrine cells are derived from Pdx1-expressing progenitors throughout embryogenesis. By contrast, the pancreatic duct arises from PDX1+ progenitors that are set aside around embryonic day 10.5 (E9.5-E11.5). These findings suggest that lineages for exocrine, endocrine islet and duct progenitors are committed at mid-gestation.
Từ khóa
Tài liệu tham khảo
Alpert, S., Hanahan, D. and Teitelman, G. (1988). Hybrid insulin genes reveal a developmental lineage for pancreatic endocrine cells and imply a relationship with neurons. Cell53, 295-308.
Apelqvist, A., Li, H., Sommer, L., Beatus, P., Anderson, D. J., Honjo, T., Hrabe de Angelis, M., Lendahl, U. and Edlund, H. (1999). Notch signalling controls pancreatic cell differentiation. Nature400, 877-881.
Bonner-Weir, S., Baxter, L. A., Schuppin, G. T. and Smith, F. E. (1993). A second pathway for regeneration of adult exocrine and endocrine pancreas. A possible recapitulation of embryonic development. Diabetes.42, 1715-1720.
Bonner-Weir, S., Taneja, M., Weir, G. C., Tatarkiewicz, K., Song, K. H., Sharma, A. and O’Neil, J. J. (2000). In vitro cultivation of human islets from expanded ductal tissue. Proc. Natl. Acad. Sci. USA97, 7999-8004.
Danielian, P. S., Muccino, D., Rowitch, D. H., Michael, S. K. and McMahon, A. P. (1998). Modification of gene activity in mouse embryos in utero by a tamoxifen-inducible form of Cre recombinase. Curr. Biol.8, 1323-1326.
Deltour, L., Leduque, P., Paldi, A., Ripoche, M. A., Dubois, P. and Jami, J. (1991). Polyclonal origin of pancreatic islets in aggregation mouse chimaeras. Development112, 1115-1121.
Dohrmann, C., Gruss, P. and Lemaire, L. (2000). Pax genes and the differentiation of hormone-producing endocrine cells in the pancreas. Mech. Dev.92, 47-54.
Dudek, R. W., Lawrence, I. E., Jr, Hill, R. S. and Johnson, R. C. (1991). Induction of islet cytodifferentiation by fetal mesenchyme in adult pancreatic ductal epithelium. Diabetes40, 1041-1048.
Fernandes, A., King, L. C., Guz, Y., Stein, R., Wright, C. V. and Teitelman. G. (1997). Differentiation of new insulin-producing cells is induced by injury in adult pancreatic islets. Endocrinology138, 1750-1762.
Gannon, M., Herrera, P. L. and Wright, C. V. (2000). Mosaic Cre-mediated recombination in pancreas using the pdx-1 enhancer/promoter. Genesis26, 143-144.
Gittes, G. K. and Rutter, W. J. (1992). Onset of cell-specific gene expression in the developing mouse pancreas. Proc. Natl. Acad. Sci. USA89, 1128-1132.
Gittes, G. K., Galante, P. E., Hanahan, D., Rutter, W. J. and Debase, H. T. (1996). Lineage-specific morphogenesis in the developing pancreas: role of mesenchymal factors. Development.122, 439-447.
Gradwohl, G., Dierich, A., LeMeur, M. and Guillemot, F. (2000). Neurogenin3 is required for the development of the four endocrine cell lineages of the pancreas. Proc. Natl. Acad. Sci. USA97, 1607-1611.
Grapin-Botton, A., Majithia, A. R. and Melton, D. A. (2001). Key events of pancreas formation are triggered in gut endoderm by ectopic expression of pancreatic regulatory genes. Genes Dev.15, 444-454.
Gu, D., Lee, M. S., Krahl, T. and Sarvetnick, N. (1994). Transitional cells in the regenerating pancreas. Development120, 1873-1881.
Guz, Y., Montminy, M. R., Stein, R., Leonard, J., Gamer, L. W., Wright, C. V. and Teitelman, G. (1995). Expression of murine STF-1, a putative insulin gene transcription factor, in beta cells of pancreas, duodenal epithelium and pancreatic exocrine and endocrine progenitors during ontogeny. Development121, 11-18.
Herrera, P. L. (2000). Adult insulin- and glucagon-producing cells differentiate from two independent cell lineages. Development127, 2317-2322.
Jensen, J., Heller, R. S., Funder-Nielsen, T., Pedersen, E. E., Lindsell, C., Weinmaster, G., Madsen, O. D. and Serup, P. (2000). Independent development of pancreatic alpha- and beta-cells from neurogenin3-expressing precursors: a role for the notch pathway in repression of premature differentiation. Diabetes49, 163-176.
Jonsson, J., Carlsson, L., Edlund, T. and Edlund, H. (1994). Insulin-promoter-factor 1 is required for pancreas development in mice. Nature371, 606-609.
Kim, S. K. and Hebrok, M. (2001). Intercellular signals regulating pancreas development and function. Genes Dev.15, 111-127.
Kimmel, R. A., Turnbull, D. H., Blanquet, V., Wurst, W., Loomis, C. A. and Joyner, A. L. (2000). Two lineage boundaries coordinate vertebrate apical ectodermal ridge formation. Genes Dev.14, 1377-1389.
Kisanuki, Y. Y., Hammer, R. E., Miyazaki Ji, J., Williams, S. C., Richardson, J. A. and Yanagisawa, M. (2001). Tie2-Cre Transgenic Mice: A New Model for Endothelial Cell-Lineage Analysis in Vivo. Dev. Biol.230, 230-242.
Lallemand, Y., Luria, V., Haffner-Krausz, R. and Lonai, P. (1998). Maternally expressed PGK-Cre transgene as a tool for early and uniform activation of the Cre site-specific recombinase. Transgenic Res.7, 105-112.
Lammert, E., Cleaver, O. and Melton, D. A. (2001). Induction of pancreatic differentiation by signals from blood vessels. Science294, 564-567.
Lobe, C. G., Koop, K. E., Kreppner, W., Lomeli, H., Gertsenstein, M. and Nagy, A. (1999). Z/AP, a double reporter for cre-mediated recombination. Dev. Biol.208, 281-292.
Metzger, D., Clifford, J., Chiba, H. and Chambon, P. (1995). Conditional site-specific recombination in mammalian cells using a ligand-dependent chimeric Cre recombinase. Proc. Natl. Acad. Sci. USA92, 6991-6995.
Nagy, A. and Mar, L. (2001). Creation and use of a Cre recombinase transgenic database. Methods Mol. Biol.158, 95-106.
Nielsen, J. H., Svensson, C., Galsgaard, E. D., Moldrup, A. and Billestrup, N. (1999). Beta cell proliferation and growth factors. J. Mol. Med.77, 62-66.
Offield, M. F., Jetton, T. L., Labosky, P. A., Ray, M., Stein, R. W., Magnuson, M. A., Hogan, B. L. and Wright, C. V. (1996). PDX-1 is required for pancreatic outgrowth and differentiation of the rostral duodenum. Development122, 983-995.
Ohlsson, H., Karlsson, K. and Edlund, T. (1993). IPF1, a homeodomain-containing transactivator of the insulin gene. EMBO J.12, 4251-4259.
Pang, K., Mukonoweshuro, C. and Wong, G. G. (1994). Beta cells arise from glucose transporter type 2 (glut2)-expressing epithelial cells of the developing rat pancreas. Proc. Natl. Acad. Sci. USA91, 9559-9563.
Pictet, R. L., Clark, W. R., Williams, R. H. and Rutter, W. J. (1972). An ultrastructural analysis of the developing embryonic pancreas. Dev. Biol.29, 436-467.
Ramiya, V. K., Maraist, M., Arfors, K. E., Schatz, D. A., Peck, A. B. and Cornelius, J. G. (2000). Reversal of insulin-dependent diabetes using islets generated in vitro from pancreatic stem cells. Nat. Med. 6, 278-282.
Rodriguez, C. I., Buchholz, F., Galloway, J., Sequerra, R., Kasper, J., Ayala, R., Stewart, A. F. and Dymecki, S. M. (2000). High-efficiency deleter mice show that FLPe is an alternative to Cre-loxP. Nat. Genet.25, 139-140.
Rossant, J. and McMahon, A. (1999). ‘Cre’-ating mouse mutants-a meeting review on conditional mouse genetics. Genes Dev.13, 142-145.
Sauer, B. (1998). Inducible gene targeting in mice using the Cre/lox system. Methods14, 381-392.
Schwitzgebel, V. M., Scheel, D. W., Conners, J. R., Kalamaras, J., Lee, J. E., Anderson, D. J., Sussel, L., Johnson, J. D. and German, M. S. (2000). Expression of neurogenin3 reveals an islet cell precursor population in the pancreas. Development127, 3533-3542.
Sommer, L., Ma, Q. and Anderson, D. J. (1996). Neurogenins, a novel family of atonal-related bHLH transcription factors, are putative mammalian neuronal determination genes that reveal progenitor cell heterogeneity in the developing CNS and PNS. Mol. Cell. Neurosci.8, 221-241.
Soria, B., Roche, E., Berna, G., Leon-Quinto, T., Reig, J. A. and Martin, F. (2000). Insulin-secreting cells derived from embryonic stem cells normalize glycemia in streptozotocin-induced diabetic mice. Diabetes49, 157-162.
Teitelman, G. and Lee, J. K. (1987). Cell lineage analysis of pancreatic islet development: glucagon and insulin cells arise from catecholaminergic precursors present in the pancreatic duct. Dev. Biol.121, 454-466.
Teitelman, G., Alpert, S., Polak, J. M., Martinez, A. and Hanahan, D. (1993). Precursor cells of mouse endocrine pancreas coexpress insulin, glucagon and the neuronal proteins tyrosine hydroxylase and neuropeptide Y, but not pancreatic polypeptide. Development118, 1031-1039.
Upchurch, B. H., Aponte, G. W. and Leiter, A. B. (1994). Expression of peptide YY in all four islet cell types in the developing mouse pancreas suggests a common peptide YY-producing progenitor. Development120, 245-252.
Upchurch, B. H., Fung, B. P., Rindi, G., Ronco, A. and Leiter, A. B. (1996). Peptide YY expression is an early event in colonic endocrine cell differentiation: evidence from normal and transgenic mice. Development122, 1157-1163.
Warnock, G. L., Kneteman, N. M., Evans, M. G. and Rajotte, R. V. (1990). Isolation of purified large mammal and human islets of Langerhans. Horm. Metab. Res.25 Suppl., 37-44.