Phát hiện trực tiếp vật chất tối: Dự đoán chính xác trong khung mô hình đơn giản
Tóm tắt
Từ khóa
Tài liệu tham khảo
G. Aad et al., Observation of a new particle in the search for the Standard Model Higgs boson with the ATLAS detector at the LHC. Phys. Lett. B 716, 1 (2012). arXiv:1207.7214
S. Chatrchyan et al., Observation of a new boson at a mass of 125 GeV with the CMS experiment at the LHC. Phys. Lett. B 716, 30 (2012). arXiv:1207.7235
G. Bertone, D. Hooper, J. Silk, Particle dark matter: evidence, candidates and constraints. Phys. Rep. 405, 279 (2005). arXiv:hep-ph/0404175
E. Ma, Verifiable radiative seesaw mechanism of neutrino mass and dark matter. Phys. Rev. D 73, 077301 (2006). arXiv:hep-ph/0601225
M. Klasen, C.E. Yaguna, J.D. Ruiz-Alvarez, D. Restrepo, O. Zapata, Scalar dark matter and fermion coannihilations in the radiative seesaw model. JCAP 04, 044 (2013). arXiv:1302.5298
R. Peccei, H.R. Quinn, CP conservation in the presence of instantons. Phys. Rev. Lett. 38, 1440 (1977)
R. Peccei, H.R. Quinn, Constraints imposed by CP conservation in the presence of instantons. Phys. Rev. D 16, 1791 (1977)
G. Arcadi, M. Dutra, P. Ghosh, M. Lindner, Y. Mambrini, M. Pierre, S. Profumo, F.S. Queiroz, The waning of the WIMP? A review of models, searches, and constraints. Eur. Phys. J. C 78(3), 203 (2018). arXiv:1703.07364
J. Abdallah et al., Simplified models for dark matter searches at the LHC. Phys. Dark Univ. 9–10, 8 (2015). arXiv:1506.03116
T. Marrodan Undagoitia, L. Rauch, Dark matter direct-detection experiments. J. Phys. G 43(1), 013001 (2016). arXiv:1509.08767
J.B. Dent, L.M. Krauss, J.L. Newstead, S. Sabharwal, General analysis of direct dark matter detection: from microphysics to observational signatures. Phys. Rev. D 92(6), 063515 (2015). arXiv:1505.03117
M. Drees, M.M. Nojiri, New contributions to coherent neutralino-nucleus scattering. Phys. Rev. D 47, 4226 (1993). arXiv:hep-ph/9210272
M. Drees, M. Nojiri, Neutralino-nucleon scattering revisited. Phys. Rev. D 48, 3483 (1993). arXiv:hep-ph/9307208
J. Hisano, K. Ishiwata, N. Nagata, Gluon contribution to the dark matter direct detection. Phys. Rev. D 82, 115007 (2010). arXiv:1007.2601
U. Haisch, F. Kahlhoefer, On the importance of loop-induced spin-independent interactions for dark matter direct detection. JCAP 04, 050 (2013). arXiv:1302.4454
A. Crivellin, F. D’Eramo, M. Procura, New constraints on dark matter effective theories from standard model loops. Phys. Rev. Lett. 112, 191304 (2014). arXiv:1402.1173
T. Abe, R. Sato, Quantum corrections to the spin-independent cross section of the inert doublet dark matter. JHEP 03, 109 (2015). arXiv:1501.04161
J. Hisano, R. Nagai, N. Nagata, Effective theories for dark matter nucleon scattering. JHEP 05, 037 (2015). arXiv:1502.02244
J. Hisano, K. Ishiwata, N. Nagata, QCD effects on direct detection of wino dark matter. JHEP 06, 097 (2015). arXiv:1504.00915
M. Klasen, K. Kovarik, P. Steppeler, SUSY-QCD corrections for direct detection of neutralino dark matter and correlations with relic density. Phys. Rev. D 94(9), 095002 (2016). arXiv:1607.06396
T. Abe, M. Fujiwara, J. Hisano, Loop corrections to dark matter direct detection in a pseudoscalar mediator dark matter model. JHEP 02, 028 (2019). arXiv:1810.01039
D. Azevedo, M. Duch, B. Grzadkowski, D. Huang, M. Iglicki, R. Santos, One-loop contribution to dark-matter-nucleon scattering in the pseudo-scalar dark matter model. JHEP 01, 138 (2019). arXiv:1810.06105
K. Ishiwata, T. Toma, Probing pseudo Nambu-Goldstone boson dark matter at loop level. JHEP 12, 089 (2018). arXiv:1810.08139
K. Ghorbani, P.H. Ghorbani, Leading loop effects in pseudoscalar-Higgs portal dark matter. JHEP 05, 096 (2019). arXiv:1812.04092
F. Ertas, F. Kahlhoefer, Loop-induced direct detection signatures from CP-violating scalar mediators. JHEP 06, 052 (2019). arXiv:1902.11070
K.A. Mohan, D. Sengupta, T.M. Tait, B. Yan, C.P. Yuan, Direct detection and LHC constraints on a $$t$$-channel simplified model of Majorana dark matter at one loop. JHEP 05, 115 (2019). arXiv:1903.05650
S. Glaus, M. Mühlleitner, J. Müller, S. Patel, R. Santos, Electroweak corrections to dark matter direct detection in a vector dark matter model. JHEP 10, 152 (2019). arXiv:1908.09249
S. Glaus, M. Mühlleitner, J. Müller, S. Patel, R. Santos, NLO corrections to vector dark matter direct detection—an update (2020). arXiv:2005.11540
A. Abdelhameed et al., First results from the CRESST-III low-mass dark matter program. Phys. Rev. D 100(10), 102002 (2019). arXiv:1904.00498
E. Aprile et al., Dark matter search results from a one ton-year exposure of XENON1T. Phys. Rev. Lett. 121(11), 111302 (2018). arXiv:1805.12562
E. Aprile et al., Constraining the spin-dependent WIMP-nucleon cross sections with XENON1T. Phys. Rev. Lett. 122(14), 141301 (2019). arXiv:1902.03234
M. Aaboud et al., Search for dark matter and other new phenomena in events with an energetic jet and large missing transverse momentum using the ATLAS detector. JHEP 01, 126 (2018). arXiv:1711.03301
C. Borschensky, G. Coniglio, B. Jäger, Dark matter pair production in the MSSM and in simplified dark matter models at the LHC. Eur. Phys. J. C 79(5), 428 (2019). arXiv:1812.08704
E. Dudas, Y. Mambrini, S. Pokorski, A. Romagnoni, (In)visible Z-prime and dark matter. JHEP 08, 014 (2009). arXiv:0904.1745
H. An, L.T. Wang, H. Zhang, Dark matter with $$t$$-channel mediator: a simple step beyond contact interaction. Phys. Rev. D 89(11), 115014 (2014). arXiv:1308.0592
A. DiFranzo, K.I. Nagao, A. Rajaraman, T.M. Tait, Simplified models for dark matter interacting with quarks. JHEP 11, 014 (2013). arXiv:1308.2679
D. Abercrombie, et al., Dark matter benchmark models for early LHC Run-2 searches: report of the ATLAS/CMS Dark Matter Forum (2015). arXiv:1507.00966
P. Ko, A. Natale, M. Park, H. Yokoya, Simplified DM models with the full SM gauge symmetry: the case of $$t$$-channel colored scalar mediators. JHEP 01, 086 (2017). arXiv:1605.07058
T. Lin, Dark matter models and direct detection. PoS 333, 009 (2019). arXiv:1904.07915
M. Schumann, Direct detection of WIMP dark matter: concepts and status. J. Phys. G 46(10), 103003 (2019). arXiv:1903.03026
K.R. Dienes, J. Kumar, B. Thomas, D. Yaylali, Overcoming velocity suppression in dark-matter direct-detection experiments. Phys. Rev. D 90(1), 015012 (2014). arXiv:1312.7772
G. Bélanger, F. Boudjema, A. Pukhov, A. Semenov, Dark matter direct detection rate in a generic model with micrOMEGAs 2.2. Comput. Phys. Commun. 180, 747 (2009). arXiv:0803.2360
G. Bélanger, F. Boudjema, A. Goudelis, A. Pukhov, B. Zaldivar, micrOMEGAs5.0: freeze-in. Comput. Phys. Commun. 231, 173 (2018). arXiv:1801.03509
G. Angloher et al., Limits on dark matter effective field theory parameters with CRESST-II. Eur. Phys. J. C 79(1), 43 (2019). arXiv:1809.03753
Zyla, P.A. et al., The review of particle physics. Prog. Theor. Exp. Phys. 083C01 (2020) (to be published)
R.J. Hill, M.P. Solon, Standard Model anatomy of WIMP dark matter direct detection II: QCD analysis and hadronic matrix elements. Phys. Rev. D 91, 043505 (2015). arXiv:1409.8290
F. Bishara, J. Brod, B. Grinstein, J. Zupan, DirectDM: a tool for dark matter direct detection (2017). arXiv:1708.02678
A. Fitzpatrick, W. Haxton, E. Katz, N. Lubbers, Y. Xu, The effective field theory of dark matter direct detection. JCAP 02, 004 (2013). arXiv:1203.3542
M. Chala, F. Kahlhoefer, M. McCullough, G. Nardini, K. Schmidt-Hoberg, Constraining dark sectors with monojets and dijets. JHEP 07, 089 (2015). arXiv:1503.05916
G. Busoni et al., Recommendations on presenting LHC searches for missing transverse energy signals using simplified $$s$$-channel models of dark matter. Phys. Dark Univ. 27, 100365 (2020). arXiv:1603.04156
D. Binosi, L. Theussl, JaxoDraw: a graphical user interface for drawing Feynman diagrams. Comput. Phys. Commun. 161, 76 (2004). arXiv:hep-ph/0309015
D. Binosi, J. Collins, C. Kaufhold, L. Theussl, JaxoDraw: a graphical user interface for drawing Feynman diagrams. Version 2.0 release notes. Comput. Phys. Commun. 180, 1709 (2009). arXiv:0811.4113
R. Mertig, M. Bohm, A. Denner, FEYN CALC: computer algebraic calculation of Feynman amplitudes. Comput. Phys. Commun. 64, 345 (1991)
V. Shtabovenko, R. Mertig, F. Orellana, New developments in FeynCalc 9.0. Comput. Phys. Commun. 207, 432 (2016). arXiv:1601.01167
V. Shtabovenko, R. Mertig, F. Orellana, FeynCalc 9.3: new features and improvements (2020). arXiv:2001.04407