Tác động trực tiếp và gián tiếp của một loài cây xâm lấn không bản địa đối với các cộng đồng thực vật ven biển

Plant Ecology - Tập 223 - Trang 935-949 - 2022
Brisa Marciniak1, Lucas Peixoto Machado1, Leonardo Leite Ferraz de Campos1, Marina Hirota1,2, Michele S. Dechoum1,3
1Programa de Pós-graduação em Ecologia, Universidade Federal de Santa Catarina, Florianópolis, Brazil
2Departamento de Física, Universidade Federal de Santa Catarina, Florianópolis, Brazil
3Departamento de Ecologia e Zoologia, Universidade Federal de Santa Catarina, Florianópolis, Brazil

Tóm tắt

Sự xâm lấn sinh học là một phần của những biến đổi môi trường toàn cầu đặc trưng cho thời kỳ Anthropocene. Những loài cây xâm lấn có thể làm giảm độ che phủ và sự phong phú của các loài bản địa trong các cộng đồng thực vật. Các cơ chế gây ra những thay đổi như vậy có thể liên quan đến sự hiện diện (các yếu tố trực tiếp) hoặc đặc điểm chức năng của các loài được giới thiệu (các yếu tố gián tiếp), ngoài những thay đổi về các yếu tố abiotic. Trong nghiên cứu này, các mô hình phân phối loài chung đã được xây dựng dựa trên khuôn khổ Bayesian để đánh giá tác động trực tiếp và gián tiếp của sự hiện diện của cây xâm lấn Terminalia catappa đến các cấp độ cấu trúc khác nhau của các cộng đồng thực vật, bao gồm sự đa dạng và thành phần loài, cùng với các đặc điểm chức năng và các mẫu đồng xuất hiện của các loài bản địa. Các mẫu cây đã được lấy tại các khu vực dưới tán cây T. catappa (n = 30), kết hợp với các khu vực không có cây xâm lấn (n = 30). Chiều cao và diện tích tán cây của mỗi cây T. catappa cũng như độ dày lớp thảm mục và tỷ lệ đất trống đã được đo/ước lượng trong tất cả các ô mẫu. Sự hiện diện của T. catappa đã thay đổi thành phần của các cộng đồng thực vật, tạo điều kiện cho sự phát triển của các loài ưa bóng râm, và dẫn đến sự mất mát các mối quan hệ tích cực và tiêu cực giữa các loài bản địa. Hệ sinh thái ven biển được đánh giá trong nghiên cứu của chúng tôi có xu hướng chuyển đổi từ một tập hợp thực vật thảo - bụi ưa sáng sang hệ thực vật chiếm ưu thế bởi cây cối và dây leo phát triển tốt hơn trong các môi trường bóng râm hoặc ánh sáng khuếch tán. Chúng tôi nhấn mạnh tầm quan trọng của việc thu thập dữ liệu về các đặc điểm cấu trúc và chức năng của cộng đồng thực vật để cho phép hiểu biết chi tiết về các tác động trực tiếp và gián tiếp của sự xâm lấn thực vật đối với các hệ sinh thái ven biển.

Từ khóa

#sự xâm lấn sinh học #cây xâm lấn #cộng đồng thực vật #chức năng sinh thái #hệ sinh thái ven biển

Tài liệu tham khảo

Alberio C, Comparatore V (2014) Patterns of woody plant invasion in an Argentinean coastal grassland. Acta Oecologica 54:65–71. https://doi.org/10.1016/j.actao.2013.09.003 Alston KP, Richardson DM (2006) The roles of habitat features, disturbance, and distance from putative source populations in structuring alien plant invasions at the urban/wildland interface on the Cape Peninsula, South Africa. Biol Cons 132:183–198. https://doi.org/10.1016/j.biocon.2006.03.023 Anand A, Divya N, Kotti P (2015) An updated review of Terminalia catappa. Pharmacogn Rev 9(18):93–98. https://doi.org/10.4103/0973-7847.162103 Arteaga LL, Aguirre LF, Moya MI (2006) Seed rain produced by bats and birds in forest islands in a Neotropical Savanna 1. Biotropica 38(6):718–724. https://doi.org/10.1111/j.1744-7429.2006.00208.x Assumpção J, Nascimento MT (2000) Estrutura e composição florística de quatro formações vegetais de restinga no complexo lagunar Grussaí/Iquipari, São João da Barra, RJ, Brasil. Acta Botanica Brasilica 14:301–315. https://doi.org/10.1590/S0102-33062000000300007 Back AJ, Rodrigues MLG (2021) Characterization of temporal rainfall distribution in Florianópolis, Santa Catarina, Brazil. Revista Brasileira De Climatologia 28:201–219. https://doi.org/10.5380/rbclima.v28i0.73260 Barbier EB (2017) Marine ecosystem services. Curr Biol 27(11):R507–R510. https://doi.org/10.1016/j.cub.2017.03.020 Baskin CC, Baskin MJ (2014) Seeds: ecology, biogeography, and evolution of dormancy and germination, 2nd edn. Elsevier/Academic Press, San Diego Belay TA, Moe SR (2015) Assessing the effects of woody plant traits on understory herbaceous cover in a semiarid rangeland. Environ Manage 56(1):165–175. https://doi.org/10.1007/s00267-015-0491-3 Bravo-Monasterio P, Pauchard A, Fajardo A (2016) Pinus contorta invasion into treeless steppe reduces species richness and alters species traits of the local community. Biol Invasions 18(7):1883–1894. https://doi.org/10.1007/s10530-016-1131-4 Bürkner PC (2017) brms: an R package for Bayesian multilevel models using Stan. J Stat Softw 80(1):1–28. https://doi.org/10.18637/jss.v080.i01 CABI (2019). Invasive species compendium—Terminalia catappa Datasheet. https://www.cabi.org/Isc/datasheet/53143 (accessed Dec 2020). Carboni M, Santoro R, Acosta ATR (2010) Are some communities of the coastal dune zonation more susceptible to alien plant invasion? J Plant Ecol 3(2):139–147. https://doi.org/10.1093/jpe/rtp037 Carvalho AM (1997) A synopsis of the genus Dalbergia (Fabaceae: Dalbergieae) in Brazil. Brittonia 49:87–109. https://doi.org/10.2307/2807701 Castro-Díez P, Pauchard A, Traveset A, Vilà M (2016) Linking the impacts of plant invasion on community functional structure and ecosystem properties. J Veg Sci 27(6):1233–1242. https://doi.org/10.1111/jvs.12429 Castro-Díez P, Vaz AS, Silva JS, van Loo M, Alonso Á, Aponte C, Bayón Á, Bellingham PJ, Chiuffo MC, DiManno N, Julian K, Kandert S, La Porta N, Marchante H, Maule HG, Mayfield MM, Metcalfe D, Monteverdi MC, Núñez MA, Ostertag R, Parker IM, Peltzer DA, Potgieter LJ, Raymundo M, Rayome D, Reisman-Berman O, Richardson DM, Roos RE, Saldaña A, Shackleton RT, Torres A, Trudgen M, Urban J, Vicente JR, Vilà M, Ylioja T, Zenni RD, Godoy O (2019) Global effects of non-native tree species on multiple ecosystem services. Biol Rev 94(4):1477–1501. https://doi.org/10.1111/brv.12511 Clavijo MDP, Nordenstahl M, Gundel PE, Jobbágy EG (2005) Poplar afforestation effects on grassland structure and composition in the Flooding Pampas. Rangel Ecol Manage 58(5):474–479. https://doi.org/10.2111/1551-5028(2005)58[474:PAEOGS]2.0.CO;2 Cousins M, Briggs J, Whitwell T, Gresham C, Whetstone J (2010) Reestablishment potential of beach Vitex (Vitex rotundifolia) after removal and control efforts. Invasive Plant Sci Manage 3(3):327–333. https://doi.org/10.1614/IPSM-D-09-00062.1 Daehler CC, Virtue JG (2010) Likelihood and consequences: reframing the Australian weed risk assessment to reflect a standard model of risk. Plant Prot Q 25(2):52–55 Dalotto CE, Sühs RB, Dechoum MS, Pugnaire FI, Peroni N, Castellani TT (2018) Facilitation influences patterns of perennial species abundance and richness in a subtropical dune system. AoB Plants. https://doi.org/10.1093/aobpla/ply017 Dechoum MS, Zenni RD, Castellani TT, Zalba SM, Rejmánek M (2015) Invasions across secondary forest successional stages: effects of local plant community, soil, litter, and herbivory on Hovenia dulcis seed germination and seedling establishment. Plant Ecol 216(6):823–833. https://doi.org/10.1007/s11258-015-0470-z Díaz S, Settele J, Brondízio ES, Ngo HT, Agard J, Arneth A, Balvanera P, Brauman KA, Butchart SHM, Chan KMA, Garibaldi LA, Ichii K, Liu J, Subramanian SM, Midgley GF, Miloslavich P, Molnár Z, Obura D, Pfaff A, Polasky S, Purvi A, Razzaque J, Reyers B, Chowdhury RR, Shin Y-J, Visseren-Hamakers I, Willis KJ, Zayas CN (2019) Pervasive human-driven decline of life on Earth points to the need for transformative change. Science. https://doi.org/10.1126/science.aax3100 Diez JM, D’Antonio CM, Dukes JS, Grosholz ED, Olden JD, Sorte CJ, Blumenthal DM, Bradley BA, Early B, Ibáñez I, Jones SJ, Lawler JJ, Miller LP (2012) Will extreme climatic events facilitate biological invasions? Front Ecol Environ 10(5):249–257. https://doi.org/10.1890/110137 Doody JP (2013) Coastal squeeze and managed realignment in southeast England, does it tell us anything about the future? Ocean Coast Manag 79:34–41. https://doi.org/10.1016/j.ocecoaman.2012.05.008 Drius M, Jones L, Marzialetti F, Francesco MC, Stanisci A, Carranza ML (2019) Not just a sandy beach. The multi-service value of Mediterranean coastal dunes. Sci Total Environ 10:1139–1155. https://doi.org/10.1016/j.scitotenv.2019.02.364 Eriksson O (1995) Seedling recruitment in deciduous forest herbs: the effects of litter, soil chemistry and seed bank. Flora 190(1):65–70. https://doi.org/10.1016/S0367-2530(17)30626-6 Falkenberg DB (1999) Aspectos da flora e da vegetação secundária da restinga de Santa Catarina, sul do Brasil. Insula 28:1–30 Fischer FM, Oliveira JM, Dresseno AL, Pillar VD (2014) The role of invasive pine on changes of plant composition and functional traits in a coastal dune ecosystem. Natureza Conservação 12(1):19–23. https://doi.org/10.4322/natcon.2014.004 Gelman A, Rubin DB (1992) Inference from iterative simulation using multiple sequences. Stat Sci 7(4):457–472. https://doi.org/10.1214/ss/1177011136 Hata K, Kato H, Kachi N (2010) Litter of an alien tree, Casuarina equisetifolia, inhibits seed germination and initial growth of a native tree on the Ogasawara Islands (subtropical oceanic islands). J for Res 15(6):384–390. https://doi.org/10.1007/s10310-010-0199-4 Hejda M, Hanzelka J, Kadlec T, Štrobl M, Pyšek P, Reif J (2017) Impacts of an invasive tree across trophic levels: species richness, community composition and resident species’ traits. Divers Distrib 23(9):997–1007. https://doi.org/10.1111/ddi.12596 Hooper DU, Chapin FS III, Ewel JJ, Hector A, Inchaust P, Lavorel S, Lawton JH, Lodge DM, Loreau M, Naeem S, Schmid B, Setälä H, Symstad AJ, Vandermeer J, Wardle DA (2005) Effects of biodiversity on ecosystem functioning: a consensus of current knowledge. Ecol Monogr 75(1):3–35. https://doi.org/10.1890/04-0922 Hulme PE (2012) Weed risk assessment: a way forward or a waste of time? J Appl Ecol 49:10–19. https://doi.org/10.1111/j.1365-2664.2011.02069.x INMET (2021) Climatological database. http://www.inmet.gov.br/portal/index.php?r=clima/graficosClimaticos (accessed June 8, 2021). Iponga DM, Milton SJ, Richardson DM (2010) Performance of seedlings of the invasive alien tree Schinus molle L under indigenous and alien host trees in semi-arid savanna. African Journal of Ecology 48(1):155–158. https://doi.org/10.1111/j.1365-2028.2009.01094.x Katsanevakis S, Coll M, Piroddi C, Steenbeek J, Ben Rais Lasram F, Zenetos A, Cardoso AC (2014) Invading the Mediterranean Sea: biodiversity patterns shaped by human activities. Front Marine Sci. https://doi.org/10.3389/fmars.2014.00032 Kattge J, Díaz S, Lavorel S, Prentice IC, Leadley P, Bönisch G, Garnier E, Westoby M, Reich PB, Wright IJ, Cornelissen JHC, Violle C, Harrison SP, Van Bodegom PM, Reichstein M, Enquist BJ, Soudzilovskaia NA, Ackerly DD, Anand M, Atkin O, Bahn M, Baker TR, Baldocchi D, Bekker R, Blanco CC, Blonder B, Bond WJ, Bradstock R, Bunker DE, Casanoves F, Cavender-Bares J, Chambers JQ, Chapin FS III, Chave J, Coomes D, Cornwell WK, Craine JM, Dobrin BH, Duarte L, Durka W, Elser J, Esser G, Estiarte M, Fagan WF, Fang J, Fernández-Méndez F, Fidelis A, Finegan B, Flores O, Ford H, Frank D, Freschet GT, Fyllas NM, Gallagher RV, Green WA, Gutierrez AG, Hickler T, Higgins SI, Hodgson JG, Jalili A, Jansen S, Joly CA, Kerkhoff AJ, Kirkup D, Kitajima K, Kleyer M, Klotz S, Knops JMH, Kramer K, Kühn I, Kurokawa H, Laughlin D, Lee TD, Leishman M, Lens F, Lenz T, Lewis SL, Lloyd J, Llusià J, Louault F, Ma S, Mahecha MD, Manning P, Massad T, Medlyn BE, Messier J, Moles AT, Müller SC, Nadrowski K, Naeem S, Niinemets Ü, Nöllert S, Nüske A, Ogaya R, Oleksyn J, Onipchenko VG, Onoda Y, Ordoñez J, Overbeck G, Ozinga WA, Patiño S, Paula S, Pausas JG, Peñuelas J, Phillips OL, Pillar V, Poorter H, Poorter L, Poschlod P, Prinzing A, Proulx R, Rammig A, Reinsch S, Reu B, Sack L, Salgado-Negret B, Sardans J, Shiodera S, Shipley B, Siefert A, Sosinski E, Soussana J-F, Swaine E, Swenson N, Thompson K, Thornton P, Waldram M, Weiher E, White M, White S, Wright SJ, Yguel B, Zaehle S, Zanne AE, Wirth C (2020) TRY—a global database of plant traits. Global Change Biol. 17(9):2905–2935. https://doi.org/10.1111/j.1365-2486.2011.02451.x Lewis SL, Maslin MA (2015) Defining the anthropocene. Nature 519:171–180. https://doi.org/10.1038/nature14258 Liu Y, Oduor AM, Zhang Z, Manea A, Tooth IM, Leishman MR, Xu X, Kleunen M (2017) Do invasive alien plants benefit more from global environmental change than native plants? Glob Change Biol 23(8):3363–3370. https://doi.org/10.1111/gcb.13579 López-Pintor A, Sal AG, Benayas JR (2006) Shrubs as a source of spatial heterogeneity—the case of Retama sphaerocarpa in Mediterranean pastures of central Spain. Acta Oecologica 29(3):247–255. https://doi.org/10.1016/j.actao.2005.11.001 Makowski C, Finkl CW (2019) Invasive species within south Florida coastal ecosystems: an example of a marginalized environmental resource base. In: Makowski C, Finkl C (eds) Impacts of invasive species on coastal environments. Coastal Research Library, Springer, pp 3–62 Marchante H, Marchante E, Freitas H (2003) Invasion of the Portuguese dune ecosystems by the exotic species Acacia longifolia (Andrews) Willd: effects at the community level. In: Child C, Brock JH (eds) Plant invasions: ecological threats and management solutions. Blackhuys Publishers, The Netherlands, pp 75–85 Marjenah M, Putri NP (2017) Morphological characteristic and physical environment of Terminalia catappa in East Kalimantan. Indonesia Asian J Forest 1(1):33–39. https://doi.org/10.13057/asianjfor/r010105 Martínez ML, Intralawan A, Vázquez G, Pérez-Maqueo O, Sutton P, Landgrave R (2007) The coasts of our world: ecological, economic and social importance. Ecol Econ 63(2–3):254–272. https://doi.org/10.1016/j.ecolecon.2006.10.022 Mehvar S, Filatova T, Dastgheib A, Ruyter De, van Steveninck E, Ranasinghe R (2018) Quantifying economic value of coastal ecosystem services: a review. J Marine Sci Eng 6(1):5. https://doi.org/10.3390/jmse6010005 Ogden NH, Wilson JRU, Richardson DM, Hui C, Davies SJ, Kumschick S, Le Roux JJ, Measey J, Saul W-C, Pulliam JRC (2019) Emerging infectious diseases and biological invasions: a call for a One Health collaboration in science and management. Royal Soc Open Sci. https://doi.org/10.1098/rsos.181577 Olson DM, Dinerstein E, Wikramanayake ED, Burgess ND, Powell GV, Underwood EC, D’amico JA, Itoua I, Strand HE, Morrison JC, Loucks CJ, Allnutt TF, Ricketts TH, Kura Y, Lamoreux JF, Wettengel WW, Hedao P, Kassem KR (2001) Terrestrial ecoregions of the world: a new map of life on earth. Bioscience 51(11):933–938. https://doi.org/10.1641/0006-3568(2001)051[0933:TEOTWA]2.0.CO;2 Ovaskainen O, Tikhonov G, Norberg A, Guillaume Blanchet F, Duan L, Dunson D, Roslin T, Abrego N (2017) How to make more out of community data? A conceptual framework and its implementation as models and software. Ecol Lett 20(5):561–576. https://doi.org/10.1111/ele.12757 Prather CM, Huynh A, Pennings SC (2017) Woody structure facilitates invasion of woody plants by providing perches for birds. Ecol Evol 7(19):8032–8039. https://doi.org/10.1002/ece3.3314 Pyšek P, Chytrý M, Jarošík V (2010) Habitats and land use as determinants of plant invasions. In: Perrings C, Mooney H, Williamson M (eds) Bioinvasions and globalization. Oxford University Press, Oxford, pp 66–79 Pyšek P, Jarošík V, Hulme PE, Pergl J, Hejda M, Schaffner U, Vilà M (2012) A global assessment of invasive plant impacts on resident species, communities and ecosystems: the interaction of impact measures, invading species’ traits and environment. Glob Change Biol 18(5):1725–1737. https://doi.org/10.1111/j.1365-2486.2011.02636.x Pyšek P, Bacher S, Kuhn I, Novoa A, Catford JA, Hulme PE, Pergl J, Richardson DM, Wilson JRU, Blackburn TM (2020) MAcroecological framework for invasive aliens (MAFIA): disentangling large-scale context dependence in biological invasions. Neobiota 62:407–461. https://doi.org/10.3897/neobiota.62.52787 R Core Team (2021) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria Randle M, Stevens N, Midgley G (2018) Comparing the differential effects of canopy shading by Dichrostachys cinerea and Terminalia sericea on grass biomass. S Afr J Bot 119:271–277. https://doi.org/10.1016/j.sajb.2018.09.026 Ratajczak Z, Nippert JB, Collins SL (2012) Woody encroachment decreases diversity across North American grasslands and savannas. Ecology 93(4):697–703. https://doi.org/10.1890/11-1199.1 Regolin AL, Muylaert RL, Crestani AC, Dáttilo W, Ribeiro MC (2020) Seed dispersal by Neotropical bats in human-disturbed landscapes. Wildl Res 48:1–6. https://doi.org/10.1071/WR19138 Richardson DM, Rejmánek M (2011) Trees and shrubs as invasive alien species–a global review. Divers Distrib 17(5):788–809. https://doi.org/10.1111/j.1472-4642.2011.00782.x Richardson DM, Williams PA, Hobbs RJ (1994) Pine invasions in the Southern Hemisphere: determinants of spread and invadability. J Biogeogr 21(5):511–527. https://doi.org/10.2307/2845655 Rundel PW, Dickie IA, Richardson DM (2014) Tree invasions into treeless areas: mechanisms and ecosystem processes. Biol Invasions 16(3):663–675. https://doi.org/10.1007/s10530-013-0614-9 Scariot A (2000) Seedling mortality by Litterfall in Amazonian forest fragments 1. Biotropica 32(4a):662–669. https://doi.org/10.1111/j.1744-7429.2000.tb00513.x Schmidt AD, Castellani TT, Dechoum MS (2020) Biotic and abiotic changes in subtropical seasonal deciduous forest associated with invasion by Hovenia dulcis Thunb. (Rhamnaceae). Biol Invasions 22(2):293–306. https://doi.org/10.1007/s10530-019-02089-4 Simberloff D, Nuñez MA, Ledgard NJ, Pauchard A, Richardson DM, Sarasola M, Wilgen BWV, Zalba SM, Zenni RD, Bustamante R, Peña E, Ziller SR (2010) Spread and impact of introduced conifers in South America: lessons from other southern hemisphere regions. Austral Ecol 35(5):489–504. https://doi.org/10.1111/j.1442-9993.2009.02058.x Simões-Jesus MF, Castellani TT (2007) Avaliação do potencial facilitador de Eucalyptus sp. na restinga da Praia da Joaquina, Ilha de Santa Catarina SC. Biotemas 20(3):27–35. https://doi.org/10.5007/%25x Souza PZ (2010) Dinâmica espaço-temporal de Dalbergia ecastaphyllum (L.) Taub. em restinga no sul do Brasil. Master’s thesis, Universidade Federal de Santa Catarina, Brazil Steers RJ, Fritzke SL, Rogers JJ, Cartan J, Hacker K (2013) Invasive pine tree effects on northern coastal scrub structure and composition. Invasive Plant Sci Manage 6(2):231–242. https://doi.org/10.1614/IPSM-D-12-00044.1 Thébault E, Fontaine C (2010) Stability of ecological communities and the architecture of mutualistic and trophic networks. Science 329(5993):853–856. https://doi.org/10.1126/science.1188321 Thomson LA, Evans B (2006) Terminalia catappa (tropical almond). Species Profiles Pacific Island Agroforestry 2(2):1–20 Tietze HSE, Joshi J, Pugnaire FI, Dechoum MS (2019) Seed germination and seedling establishment of an invasive tropical tree species under different climate change scenarios. Austral Ecol 44(8):1351–1358. https://doi.org/10.1111/aec.12809 Tikhonov G, Ovaskainen O, Oksanen J, Jonge M de, Opedal O, Dallas T (2021) Hmsc: hierarchical model of species communities. R package version 3.0–11. https://CRAN.R-project.org/package=Hmsc Tjur T (2009) Coefficients of determination in logistic regression models—a new proposal: the coefficient of discrimination. Am Stat 63(4):366–372. https://doi.org/10.1198/tast.2009.08210 UNEP (2006) Annual report. https://www.unep.org/resources/annual-report/unep-2006-annual-report (accessed June 18, 2020). van Moorsel SJ, Hahl T, Petchey OL, Ebeling A, Eisenhauer N, Schmid B, Wagg C (2021) Co-occurrence history increases ecosystem stability and resilience in experimental plant communities. Ecology 102(1):e03205 Vellend M (2016) The theory of ecological communities. Princeton University Press Vilà M, Hulme PE (2017) Impact of biological invasions on ecosystem services, vol 12. Springer International Publishing, Berlin Vilà M, Dunn AM, Essl F, Gómez-Díaz E, Hulme PE, Jeschke JM, Núñez MA, Ostfeld RS, Pauchard A, Ricciardi A, Gallardo B (2021) Viewing emerging human infectious epidemics through the lens of invasion biology. Bioscience 71(7):722–740. https://doi.org/10.1093/biosci/biab047 Williams SL, Grosholz ED (2008) The invasive species challenge in estuarine and coastal environments: marrying management and science. Estuaries Coasts 31(1):3–20. https://doi.org/10.1007/s12237-007-9031-6 Wood SN, Scheipl F, Faraway JJ (2013) Straightforward intermediate rank tensor product smoothing in mixed models. Stat Comput 23(3):341–360. https://doi.org/10.1007/s11222-012-9314-z