Direct Evidence of Simultaneous Reversal of Ferrimagnetically Coupled Sm 4f and Mn 3d Angular Momenta in SmMnO3

Journal of the Korean Physical Society - Tập 76 - Trang 904-910 - 2020
J.-S. Jung1, T. Nakamura2, Y. Wakabayashi3, T. Kimura4
1MLCC Materials Development Group, Samsung Electro-Mechanics, Suwon, Korea
2Japan Synchrotron Radiation Research Institute (JASRI), Sayo, Hyogo, Japan
3Department of Physics, Tohoku University, Sendai, Miyagi, Japan
4Department of Advanced Materials Science, University of Tokyo, Kashiwa, Chiba, Japan

Tóm tắt

Using the soft X-ray magnetic circular dichroism (XMCD) technique, we investigated the magnetic states of the Sm 4f and the Mn 3d moments in a Néel N-type ferrimagnet, SmMnO3, which exhibits a striking magnetocapacitive effect around the compensation temperature (Tcomp ≈ 9.4 K). The XMCD results show that the Sm 4f and the Mn 3d moments were always aligned antiparallel to each other and that, upon sweeping a magnetic field, the angular momenta of Sm 4f and Mn 3d were simultaneously reversed at the field where the magnetocapacitive effect was observed. This indicates that the magnetocapacitive effect of SmMnO3 is induced by a simultaneous reversal of Sm 4f and Mn 3d angular momenta, i.e., magnetization reversal. We discuss a plausible origin of the magnetocapacitive effect in terms of the p-d hybridization mechanism.

Tài liệu tham khảo

T. Kimura et al., Nature426, 55 (2003). M. Kenzelmann et al., Phys. Rev. Lett.95, 087206 (2005). V. Y. Pomjakushin et al., New J. Phys.11, 043019 (2009). S-W. Cheong and M. Mostovoy, Nat. Mater.6, 13 (2007). D. Khomskii, Physics2, 20 (2009). S. Dong and J-M. Liu, Mod. Phys. Lett. B26, 1230004 (2012). E. Bousquet and A. Cano, J. Phys.: Condens. Matter28, 123001 (2016). D. Okuyama et al., Phys. Rev. B84, 054440 (2011). H. Katsura, N. Nagaosa and A. V. Balatsky, Phys. Rev. Lett.95, 057205 (2005). I. A. Sergienko and E. Dagotto, Phys. Rev. B73, 094434 (2006). M. Mostovoy, Phys. Rev. Lett.96, 067601 (2006). I. A. Sergienko, C. Sen and E. Dagotto, Phys. Rev. Lett.97, 227204 (2006). S. Picozzi et al., Phys. Rev. Lett.99, 227201 (2007). T. Kimura et al., Phys. Rev. B68, 060403(R) (2003). V. Skumryev et al., Eur. Phys. J. B11, 401 (1999). J-S. Jung et al., Phys. Rev. B82, 212403 (2010). V. Y. Ivanov, A. A. Mukhin, A. S. Prokhorov and A. M. Balbashov, Phys. Status Solidi B236, 445 (2003). L. Néel, Ann. Phys. (Paris)3, 137 (1948). N. Menyuk, K. Dwight and D. G. Wickhan, Phys. Rev. Lett.4, 119 (1960). B. T. Thole, G. van der Laan and J. C. Fuggle, Phys. Rev. B32, 5107 (1985). S. S. Dhesi et al., Phys. Rev. B82, 180402(R) (2010). T. Koide et al., Phys. Rev. Lett.87, 246404 (2001). B. T. Thole, P. Carra, F. Sette and G. van der Laan, Phys. Rev. Lett.68, 1943 (1992). M. Altarelli, Phys. Rev. B47, 597 (1993). P. Carra, B. T. Thole, M. Altarelli and X. Wang, Phys. Rev. Lett.70, 694 (1993). P. Carra et al., Physica B192, 182 (1993). Y. Teramura, A. Tanaka and T. Jo, J. Phys. Soc. Jpn.65, 1053 (1996). S. Qiao et al., Phys. Rev. B70, 134418 (2004). T. Jo, Electron Spectrosc. Relat. Phenom.86, 73 (1997). J-G. Cheng et al., Phys. Rev. B84, 104415 (2011). A. Iyama et al., J. Phys. Soc. Jpn.81, 013703 (2012). J-S. Jung et al., Phys. Rev. B85, 174414 (2012).