Dipole moment and conformational properties of poly(methacrylic acid) in solvents with hydrogen bonding
Tóm tắt
Dielectric polarization of solutions of un-ionized linear poly(methacrylic acid) in polar associated liquids is studied in the temperature range 20–50°C. The solutions are in methanol, with the molar fraction of polymer units x
2 = (3 × 10−3)−(1.5 × 10−2), and in water, with x
2 = (4 × 10−5)−(4 × 10−3). The permittivity ε12 of the polyacid solutions in methanol is shown to be lower than the permittivity of the pure solvent ε1; the permittivity of the polyacid solutions in water exceeds ε1 of water in the concentration range x
2 = (4 × 10−5)−(2.13 × 10−4) and becomes lower than ε1 as the polymer concentration in the solution increases further. A procedure for estimating the dipole moment μ2 per monomer unit of the polymer macromolecule in solution is proposed. The estimation is based on Buckingham’s statistical polarization theory for a two-component mixture of polar molecules under the conditions of infinite dilution. The μ2 values amount to 2.76–2.14 D (x
2 < 1.5 × 10−2) in methanol at 20–50°C and to 11.4−3.8 D (x
2 < 2.13 × 10−4) in water at 20–40°C. The difference in the dipole moments of the polyacid and in the patterns of their temperature dependences in methanol and in water is due to the effects of the polyacid-solvent hydrogen bonding, to intramacromolecular hydrogen bonds, and to specificity of the local structure of the solvent. It is shown that the μ2 value corresponds to the dipole moment of the solvates and decreases with temperature owing to changes in the stoichiometry of the solvates, to the formation of cyclic associates in the macromolecule, and to conformational changes in the chain.
Tài liệu tham khảo
A. R. Khokhlov and E. E. Dermidontova, Usp. Fiz. Nauk 167, 113 (1997).
E. A. Bekturov and Z. Kh. Bakuova, Synthetic Water-Soluble Polymers in Solution (Huethig and Wepf, Basel, 1986), p. 27.
T. P. Stepanova and L. L. Burshtein, USSR Inventor’s Certificate No. 1023233, Byull. Izobret., No. 22, 105 (1983).
A. D. Buckingham, Proc. R. Soc. London, A 38, 235 (1956).
M. V. Volkenshtein, Configurational Statistics of Polymer Chains (Akad. Nauk SSSR, Moscow, 1959; New York, 1966).
T. Svedberg and K. O. Pedersen, The Ultracentrifuge (Oxford Univ. Press, New York, 1940), Part 1, p. 62.
C. J. F. Böttcher and P. Bordewijk, Theory of Electric Polarization (Elsevier, Amsterdam, 1973), Vol. 1.
L. Onsager, J. Am. Chem. Soc. 58, 1468 (1936).
O. A. Osipov, V. I. Minkin, and A. D. Garnovskii, Handbook on Dipole Moments (Vysshaya Shkola, Moscow, 1971) [in Russian].
G. Oster and J. G. Kirkwood, J. Chem. Phys. 11, 175 (1967).
A. F. Skryshevskii, Structural Analysis of Liquids and Amorphous Bodies (Vysshaya Shkola, Moscow, 1980) [in Russian].
A. Yu. Osadchev and T. P. Stepanova, Zh. Fiz. Khim. 80, 244 (2006).
N. Th. M. Klooster, F. Van der Tonw, and M. Mandel, Macromolecules 17, 2078 (1984).
J. Eliassaf and A. Silberberg, J. Polym. Sci. 41, 33 (1959).
V. N. Tsvetkov, S. Ya. Lyubina, and K. L. Bolevskii, Carbon-Chain Polymers (Akad. Nauk SSSR, Leningrad, 1963), p. 26 [in Russian].
A. I. Grigor’ev, L. A. Volkova, and O. B. Ptitsyn, Vysokomol. Soedin., Ser. A 12, 1363 (1970).
A. Silberberg, J. Eliassaf, and A. Katchalsky, J. Polym. Sci. 23, 259 (1957).
T. N. Nekrasova, Candidate’s Dissertation in Mathematics and Physics (Leningrad, 1969).
G. L. Wilson and G. M. Bell, J. Chem. Soc., Faraday Trans. 2 74, 1702 (1978).