Dip coated SnO2 film as electron transport layer for low temperature processed planar perovskite solar cells

Applied Surface Science Advances - Tập 4 - Trang 100066 - 2021
A. Ashina1, Ramya Krishna Battula1, Easwaramoorthi Ramasamy1, Narendra Chundi1, S. Sakthivel1, Ganapathy Veerappan1
1Centre for Solar Energy Materials, International Advanced Research Centre for Powder Metallurgy and New Materials (ARCI), Hyderabad 500005, India

Tài liệu tham khảo

Best Research-Cell Efficiency Chart | Photovoltaic Research | NREL, (n.d.). https://www.nrel.gov/pv/cell-efficiency.html (Accessed December 29, 2020). Hao, 2014, Lead-free solid-state organic–inorganic halide perovskite solar cells, Nat. Photonics, 8, 489, 10.1038/nphoton.2014.82 Li, 2015, Mesoporous SnO2 nanoparticle films as electron-transporting material in perovskite solar cells, RSC Adv., 5, 28424, 10.1039/C5RA01540E Kumar, 2013, Flexible, low-temperature, solution processed ZnO-based perovskite solid state solar cells, Chem. Commun., 49, 11089, 10.1039/c3cc46534a Shin, 2017, Colloidally prepared La-doped BaSnO3 electrodes for efficient, photostable perovskite solar cells, Science (80-.), 356, 167, 10.1126/science.aam6620 Bera, 2014, Perovskite oxide SrTiO3 as an efficient electron transporter for hybrid perovskite solar cells, J. Phys. Chem. C., 118, 28494, 10.1021/jp509753p Jeong, 2020, Stable perovskite solar cells with efficiency exceeding 24.8% and 0.3-V voltage loss, Science, 369, 1615, 10.1126/science.abb7167 Chen, 2019, SnO2-based electron transporting layer materials for perovskite solar cells: a review of recent progress, J. Energy Chem., 35, 144, 10.1016/j.jechem.2018.11.011 Leijtens, 2013, Overcoming ultraviolet light instability of sensitized TiO2 with meso-superstructured organometal tri-halide perovskite solar cells, Nat. Commun., 4, 2885, 10.1038/ncomms3885 Jiang, 2017, Enhanced electron extraction using SnO2 for high-efficiency planar-structure HC(NH2)2PbI3-based perovskite solar cells, Nat. Energy., 2, 16177, 10.1038/nenergy.2016.177 D.O. Scanlon, G.W. Watson, On the possibility of p-type SnO 2, (n.d.). https://doi.org/10.1039/c2jm34352e. Gubbala, 2008, Band-edge engineered hybrid structures for dye-sensitized solar cells based on SnO2 nanowires, Adv. Funct. Mater., 18, 2411, 10.1002/adfm.200800099 Jiang, 2018, SnO2 : a wonderful electron transport layer for perovskite solar cells, Small, 14, 10.1002/smll.201801154 Shi, 2020, [(C8H17) 4N] 4 [SiW 12O40] (TASiW-12)-Modified SnO2 electron transport layer for efficient and stable perovskite solar cells, Sol. RRL., 4, 10.1002/solr.202000406 Ren, 2017, Solution-processed Nb:SnO2 electron transport layer for efficient planar perovskite solar cells, ACS Appl. Mater. Interfaces., 9, 2421, 10.1021/acsami.6b13362 Xiong, 2016, Performance enhancement of high temperature SnO2 -based planar perovskite solar cells: electrical characterization and understanding of the mechanism, J. Mater. Chem. A., 4, 8374, 10.1039/C6TA01839D Ke, 2015, Low-temperature solution-processed tin oxide as an alternative electron transporting layer for efficient perovskite solar cells, J. Am. Chem. Soc., 137, 6730, 10.1021/jacs.5b01994 Huang, 2020, Introduction of LiCl into SnO2 electron transport layer for efficient planar perovskite solar cells, Chem. Phys. Lett., 745, 10.1016/j.cplett.2020.137220 Liu, 2019, Effect of tantalum doping on SnO2 electron transport layer via low temperature process for perovskite solar cells, Appl. Phys. Lett., 115, 10.1063/1.5118679 Zhu, 2019, (18.53%) of flexible perovskite solar cells via the insertion of potassium chloride between SnO2 and CH3NH3 PbI3 layers, ACS Appl. Energy Mater., 2, 3676, 10.1021/acsaem.9b00391 Liu, 2019, Hydrothermally treated SnO2 as the electron transport layer in high-efficiency flexible perovskite solar cells with a certificated efficiency of 17.3%, Adv. Funct. Mater., 29 Xiong, 2018, Review on the application of SnO2 in perovskite solar cells, Adv. Funct. Mater., 28, 10.1002/adfm.201802757 Correa Baena, 2015, Highly efficient planar perovskite solar cells through band alignment engineering, Energy Environ. Sci., 8, 2928, 10.1039/C5EE02608C Yang, 2018, Effective carrier-concentration tuning of SnO2 quantum dot electron-selective layers for high-performance planar perovskite solar cells, Adv. Mater., 30 Anaraki, 2016, Highly efficient and stable planar perovskite solar cells by solution-processed tin oxide, Energy Environ. Sci., 9, 3128, 10.1039/C6EE02390H Wang, 2020, Enhanced performance and the related mechanisms of organic solar cells using Li-doped SnO2 as the electron transport layer, Mater. Chem. Phys., 254, 10.1016/j.matchemphys.2020.123536 Wang, 2021, Hydrogen peroxide-modified SnO2 as electron transport layer for perovskite solar cells with efficiency exceeding 22%, J. Power Sources, 481, 10.1016/j.jpowsour.2020.229160 Lu, 2020, Vapor-assisted deposition of highly efficient, stable black-phase FAPbI 3 perovskite solar cells, Science (80-.), 370 Deng, 2020, Modification engineering in SnO2 electron transport layer toward perovskite solar cells: efficiency and stability, Adv. Funct. Mater., 30, 10.1002/adfm.202004209 Mathiazhagan, 2020, Improving the stability of ambient processed, SnO2 -based, perovskite solar cells by the UV-treatment of sub-cells, Sol. RRL., 4, 10.1002/solr.202000262 Haimeur, 2020, Enhanced performance of planar perovskite solar cells using dip-coated TiO2 as electron transporting layer, Sol. Energy, 195, 475, 10.1016/j.solener.2019.11.094 Tran, 2017, Low-temperature solution-processed SnO2 nanoparticles as a cathode buffer layer for inverted organic solar cells, ACS Appl. Mater. Interfaces., 9, 1645, 10.1021/acsami.6b10857 Zuo, 2017, Tailoring the interfacial chemical interaction for high-efficiency perovskite solar cells, Nano Lett., 17, 269, 10.1021/acs.nanolett.6b04015 Zhang, 2017, Rigid amino acid as linker to enhance the crystallinity of CH3 NH3 PbI3 particles, Part. Part. Syst. Charact., 34, 10.1002/ppsc.201600298 2019 2017 Bora, 2015, Phase transformation of metastable ZnSnO3 upon thermal decomposition by in-situ temperature-dependent raman spectroscopy, J. Am. Ceram. Soc., 98, 4044, 10.1111/jace.13791 Zhang, 2016, Efficient inverted planar formamidinium lead iodide perovskite solar cells via a post improved perovskite layer, RSC Adv., 6, 79952, 10.1039/C6RA15210D Saliba, 2016, Cesium-containing triple cation perovskite solar cells: improved stability, reproducibility and high efficiency, Energy Environ. Sci., 9, 1989, 10.1039/C5EE03874J Wu, 2017, Identifying the cause of voltage and fill factor losses in perovskite solar cells by using luminescence measurements, Energy Technol., 5, 1827, 10.1002/ente.201700374