Dip coated SnO2 film as electron transport layer for low temperature processed planar perovskite solar cells
Tài liệu tham khảo
Best Research-Cell Efficiency Chart | Photovoltaic Research | NREL, (n.d.). https://www.nrel.gov/pv/cell-efficiency.html (Accessed December 29, 2020).
Hao, 2014, Lead-free solid-state organic–inorganic halide perovskite solar cells, Nat. Photonics, 8, 489, 10.1038/nphoton.2014.82
Li, 2015, Mesoporous SnO2 nanoparticle films as electron-transporting material in perovskite solar cells, RSC Adv., 5, 28424, 10.1039/C5RA01540E
Kumar, 2013, Flexible, low-temperature, solution processed ZnO-based perovskite solid state solar cells, Chem. Commun., 49, 11089, 10.1039/c3cc46534a
Shin, 2017, Colloidally prepared La-doped BaSnO3 electrodes for efficient, photostable perovskite solar cells, Science (80-.), 356, 167, 10.1126/science.aam6620
Bera, 2014, Perovskite oxide SrTiO3 as an efficient electron transporter for hybrid perovskite solar cells, J. Phys. Chem. C., 118, 28494, 10.1021/jp509753p
Jeong, 2020, Stable perovskite solar cells with efficiency exceeding 24.8% and 0.3-V voltage loss, Science, 369, 1615, 10.1126/science.abb7167
Chen, 2019, SnO2-based electron transporting layer materials for perovskite solar cells: a review of recent progress, J. Energy Chem., 35, 144, 10.1016/j.jechem.2018.11.011
Leijtens, 2013, Overcoming ultraviolet light instability of sensitized TiO2 with meso-superstructured organometal tri-halide perovskite solar cells, Nat. Commun., 4, 2885, 10.1038/ncomms3885
Jiang, 2017, Enhanced electron extraction using SnO2 for high-efficiency planar-structure HC(NH2)2PbI3-based perovskite solar cells, Nat. Energy., 2, 16177, 10.1038/nenergy.2016.177
D.O. Scanlon, G.W. Watson, On the possibility of p-type SnO 2, (n.d.). https://doi.org/10.1039/c2jm34352e.
Gubbala, 2008, Band-edge engineered hybrid structures for dye-sensitized solar cells based on SnO2 nanowires, Adv. Funct. Mater., 18, 2411, 10.1002/adfm.200800099
Jiang, 2018, SnO2 : a wonderful electron transport layer for perovskite solar cells, Small, 14, 10.1002/smll.201801154
Shi, 2020, [(C8H17) 4N] 4 [SiW 12O40] (TASiW-12)-Modified SnO2 electron transport layer for efficient and stable perovskite solar cells, Sol. RRL., 4, 10.1002/solr.202000406
Ren, 2017, Solution-processed Nb:SnO2 electron transport layer for efficient planar perovskite solar cells, ACS Appl. Mater. Interfaces., 9, 2421, 10.1021/acsami.6b13362
Xiong, 2016, Performance enhancement of high temperature SnO2 -based planar perovskite solar cells: electrical characterization and understanding of the mechanism, J. Mater. Chem. A., 4, 8374, 10.1039/C6TA01839D
Ke, 2015, Low-temperature solution-processed tin oxide as an alternative electron transporting layer for efficient perovskite solar cells, J. Am. Chem. Soc., 137, 6730, 10.1021/jacs.5b01994
Huang, 2020, Introduction of LiCl into SnO2 electron transport layer for efficient planar perovskite solar cells, Chem. Phys. Lett., 745, 10.1016/j.cplett.2020.137220
Liu, 2019, Effect of tantalum doping on SnO2 electron transport layer via low temperature process for perovskite solar cells, Appl. Phys. Lett., 115, 10.1063/1.5118679
Zhu, 2019, (18.53%) of flexible perovskite solar cells via the insertion of potassium chloride between SnO2 and CH3NH3 PbI3 layers, ACS Appl. Energy Mater., 2, 3676, 10.1021/acsaem.9b00391
Liu, 2019, Hydrothermally treated SnO2 as the electron transport layer in high-efficiency flexible perovskite solar cells with a certificated efficiency of 17.3%, Adv. Funct. Mater., 29
Xiong, 2018, Review on the application of SnO2 in perovskite solar cells, Adv. Funct. Mater., 28, 10.1002/adfm.201802757
Correa Baena, 2015, Highly efficient planar perovskite solar cells through band alignment engineering, Energy Environ. Sci., 8, 2928, 10.1039/C5EE02608C
Yang, 2018, Effective carrier-concentration tuning of SnO2 quantum dot electron-selective layers for high-performance planar perovskite solar cells, Adv. Mater., 30
Anaraki, 2016, Highly efficient and stable planar perovskite solar cells by solution-processed tin oxide, Energy Environ. Sci., 9, 3128, 10.1039/C6EE02390H
Wang, 2020, Enhanced performance and the related mechanisms of organic solar cells using Li-doped SnO2 as the electron transport layer, Mater. Chem. Phys., 254, 10.1016/j.matchemphys.2020.123536
Wang, 2021, Hydrogen peroxide-modified SnO2 as electron transport layer for perovskite solar cells with efficiency exceeding 22%, J. Power Sources, 481, 10.1016/j.jpowsour.2020.229160
Lu, 2020, Vapor-assisted deposition of highly efficient, stable black-phase FAPbI 3 perovskite solar cells, Science (80-.), 370
Deng, 2020, Modification engineering in SnO2 electron transport layer toward perovskite solar cells: efficiency and stability, Adv. Funct. Mater., 30, 10.1002/adfm.202004209
Mathiazhagan, 2020, Improving the stability of ambient processed, SnO2 -based, perovskite solar cells by the UV-treatment of sub-cells, Sol. RRL., 4, 10.1002/solr.202000262
Haimeur, 2020, Enhanced performance of planar perovskite solar cells using dip-coated TiO2 as electron transporting layer, Sol. Energy, 195, 475, 10.1016/j.solener.2019.11.094
Tran, 2017, Low-temperature solution-processed SnO2 nanoparticles as a cathode buffer layer for inverted organic solar cells, ACS Appl. Mater. Interfaces., 9, 1645, 10.1021/acsami.6b10857
Zuo, 2017, Tailoring the interfacial chemical interaction for high-efficiency perovskite solar cells, Nano Lett., 17, 269, 10.1021/acs.nanolett.6b04015
Zhang, 2017, Rigid amino acid as linker to enhance the crystallinity of CH3 NH3 PbI3 particles, Part. Part. Syst. Charact., 34, 10.1002/ppsc.201600298
2019
2017
Bora, 2015, Phase transformation of metastable ZnSnO3 upon thermal decomposition by in-situ temperature-dependent raman spectroscopy, J. Am. Ceram. Soc., 98, 4044, 10.1111/jace.13791
Zhang, 2016, Efficient inverted planar formamidinium lead iodide perovskite solar cells via a post improved perovskite layer, RSC Adv., 6, 79952, 10.1039/C6RA15210D
Saliba, 2016, Cesium-containing triple cation perovskite solar cells: improved stability, reproducibility and high efficiency, Energy Environ. Sci., 9, 1989, 10.1039/C5EE03874J
Wu, 2017, Identifying the cause of voltage and fill factor losses in perovskite solar cells by using luminescence measurements, Energy Technol., 5, 1827, 10.1002/ente.201700374
