Diophantine equation x3?y2=k and Hall's conjecture

Pleiades Publishing Ltd - Tập 32 Số 3 - Trang 617-618 - 1982
L. V. Danilov1
1Leningrad Electrotechnical Institute, USSR

Tóm tắt

Từ khóa


Tài liệu tham khảo

H. G. Zimmer, ?Computational problems, methods, and results in algebraic number theory,? Lect. Notes in Math.,262, Springer-Verlag, Berlin (1972).

L. J. Mordell, ?Note on the integer solutions of the equation Ey2=Ax3+Bx2+Cx+D,? Mess. Math. (2)51, 169?171 (1921).

A. Baker, ?Contributions to the theory of diophantine equations. I. On the representation of integers by binary quadratic forms. II. The diophantine equation y2=x3+k,? Philos. Trans. R. Soc. London, Ser. A,263, 173?191 (1967?1968); 193?208 (1967?1968).

H. M. Stark, ?Effective estimates of solutions of some diophantine equations,? Acta Arith.,24, No. 3, 251?259 (1973).

B. J. Birch, S. Chowla, M. Hall, Jr., and A. Schinzel, ?On the difference x3-y2,? Norske Vid. Selsk., Forh.,38, 65?69 (1965).

M. Hall, Jr., ?The diophantine equation x3-y2=k,? in: Computers in Number Theory, Academic Press, London-New York (1971), pp. 173?198.

B. A. Venkov, Elementary Number Theory [in Russian], GTTI, Moscow-Leningrad (1937).