Diophantine Equations and Bernoulli Polynomials
Tóm tắt
Từ khóa
Tài liệu tham khảo
Baker, A.: Bounds for solutions of hyperelliptic equations, Proc. Cambridge Philos. Soc. 65 (1969), 439-444.
Baker, A. and Coates, J.: Integer points on curves of genus 1, Math. Proc. Cambridge Philos. Soc. 67 (1970), 592-602.
Beukers, F., Shorey, T. N. and Tijdeman, R.: Irreducibility of polynomials and arithmetic progressions with equal product of terms, In: K. Győry, H. Iwaniec, J. Urbanowicz (eds), Number Theory in Progress: Proc. Int. Conf. in Number Theory in Honor of A. Schinzel, Zakopane, 1997, W. de Gruyter, 1999, pp. 11-26.
Bilu, Yu. F., Stoll, Th. and Tichy, R. F.: Octahedrons with equally many lattice points, Period. Math. Hungar. 40 (2000), 229-238.
Bilu, Yu. F. and Tichy, R. F.: The Diophantine equation f (x) = g(y), Acta Arith. 95 (2000), 261-288.
Brillhart, J.: On the Euler and Bernoulli polynomials, J. Reine Angew.Math. 234 (1969), 45-64.
Brindza, B.: On some generalizations of the diophantine equation 1k + 2k + ⋯ + xk = yk, Acta Arith. 44 (1984), 99-107.
Brindza, B.: Power values of sums 1k + 2k + ⋯ + xk, Number Theory II (Budapest 1987), Colloq. Math. Soc. János Bolyai 51 (1990), 595-611.
Brindza, B. and Pintér, Á.: On equal values of power sums, Acta Arith. 77 (1996), 303-307.
Brindza, B. and Pintér, Á.: On the irreducibility of some polynomials in two variables, Acta Arith. 82 (1997), 303-307.
Davenport, H., Lewis, D. J. and Schinzel, A.: Equations of the form f (x) = g(y), Quart. J. Math. Oxford 12 (1961), 304-312.
Dujella, A. and Tichy, R. F.: Diophantine equations for second order recursive sequences of polynomials, Quart. J. Math. Oxford 52 (2001), 161-169.
Erdős, P. and Selfridge, J. L.: The product of consecutive integers is never a power, Illinois J. Math. 19 (1975), 292-301.
Fried, M.: On a theorem of Ritt and related Diophantine problems, J. Reine Angew. Math. 264 (1974), 40-55.
Győry, K., Tijdeman, R. and Voorhoeve, M.: On the equation 1k + 2k + ⋯ + xk = yk, Acta Arith. 37 (1980), 234-240.
Hajdu, L. and Pintér, Á.: Combinatorial diophantine equations, Publ. Math. Debrecen 56 (2000), 391-403.
Kano, H.: On the Equation s(1k + 2k + ⋯ + xk) + r = by z, Tokyo J. Math. 13 (1990), 441-448.
Rademacher, H.: Topics in Analytic Number Theory, Springer-Verlag, Berlin, 1973.
Saradha,N., Shorey, T. N. and Tijdeman, R.: On arithmetic progressions of equal length with equal products, Math. Proc. Cambridge Philos. Soc. 117 (1995), 193-201.
Schinzel, A.: Selected Topics on Polynomials, Univ. Michigan Press, Ann Arbor, 1982.
Shorey, T. N. and Tijdeman, R.: Some methods of Erdős applied to cnite arithmetic progressions, The Mathematics of Paul Erdős, Algorithms Combin. 13 (1997), 251-267.
Siegel, C. L.: Über einige Anwendungen Diophantischer Approximationen, Abh. Preuss Akad. Wiss. Phys.-Math. Kl., 1929, Nr. 1; Ges. Abh., Band 1, 209-266.
Voorhoeve, M., Győry, K. and Tijdeman, R.: On the diophantine equation 1k + 2k + ⋯ + xk + R(x) = y z, Acta Math. 143 (1979), 1-8, corrections: Acta Math. 159 (1987), 151.
Yuan, P. Z.: On the special Diophantine equation a x n ) = by y + c, Publ.Math. Debrecen 44 (1994), 137-143.