Diode laser photoacoustic spectroscopy of CO2, H2S and O2 in a differential Helmholtz resonator for trace gas analysis in the biosciences and petrochemistry

Springer Science and Business Media LLC - Tập 411 Số 17 - Trang 3777-3787 - 2019
Saeed Alahmari1, Xiu‐Wen Kang1, Michael Hippler1
1Department of Chemistry, University of Sheffield, Sheffield, UK

Tóm tắt

Từ khóa


Tài liệu tham khảo

IDLH Documentation for Hydrogen Sulfide, National Institute for Occupational Safety and Health (NIOSH); https://www.cdc.gov/niosh/idlh/7783064.html . Accessed 21 Nov 2018.

Guidotti TL. Hydrogen sulphide. Occup Med (Lond). 1996;46:367–71.

Shivanthan MC, Perera H, Jayasinghe S, Karunanayake P, Chang T, Ruwanpathirana S, et al. Hydrogen sulphide inhalational toxicity at a petroleum refinery in Sri Lanka: a case series of seven survivors following an industrial accident and a brief review of medical literature. J Occup Med Toxicol. 2013;8:9.

Hippler M. Cavity-enhanced Raman spectroscopy of natural gas with optical feedback cw-diode lasers. Anal Chem. 2015;87:7803–9. https://doi.org/10.1021/acs.analchem.5b01462 .

Muyzer G, Stams AJ. The ecology and biotechnology of sulphate-reducing bacteria. Nat Rev Microbiol. 2008;6:441–54. https://doi.org/10.1038/nrmicro1892 .

Kimura H. Signaling molecules: hydrogen sulfide and polysulfides. Antioxid Redox Signal. 2015;22:362–76. https://doi.org/10.2183/pjab.91.131 .

Shatalin K, Shatalina E, Mironov A, Nudler E. H2S: a universal defense against antibiotics in bacteria. Science. 2011;334:986–90. https://doi.org/10.1126/science.1112699 .

Oguri T, Schneider B, Reitzer L. Cysteine catabolism and cysteine desulfhydrase (CdsH/STM0458) in Salmonella enterica serovar typhimurium. J Bacteriol. 2012;194:4.366–4376. https://doi.org/10.1128/JB.00729-12 .

Hübert T, Boon-Brett L, Black G, Banach U. Hydrogen sensors – a review. Sensors Actuators B. 2011;157:329–52. https://doi.org/10.1016/j.snb.2011.04.070 .

Malik R, Tomer VK, Kienle L. Cubic mesoporous Pd–WO3 loaded graphitic carbon nitride (g-CN) nanohybrids: highly sensitive and temperature dependent VOC sensors. J Mater Chem A. 2018;6:10718–30. https://doi.org/10.1039/c8ta02702a .

Spencer CL, Watson V, Hippler M. Trace gas detection of molecular hydrogen H2 by photoacoustic stimulated Raman spectroscopy (PARS). Analyst. 2012;137:1384–8. https://doi.org/10.1039/c2an15990b .

Salter R, Chu J, Hippler M. Cavity-enhanced Raman spectroscopy with optical feedback cw diode lasers for gas phase analysis and spectroscopy. Analyst. 2012;137:4669–76. https://doi.org/10.1039/c2an35722d .

Keiner R, Frosch T, Massad T, Trumbore S, Popp J. Enhanced Raman multigas sensing - a novel tool for control and analysis of 13CO2 labeling experiments in environmental research. Analyst. 2014;139:3879–84. https://doi.org/10.1039/c3an01971c .

Smith TW, Hippler M. Cavity-enhanced Raman spectroscopy in the biosciences: in situ, multicomponent and isotope selective gas measurements to study hydrogen production and consumption by Escherichia coli. Anal Chem. 2017;89:2147–54. https://doi.org/10.1021/acs.analchem.6b04924 .

Romanini D, Kachanov AA, Stoeckel F. Diode laser cavity ring down spectroscopy. Chem Phys Lett. 1997;270:538. https://doi.org/10.1016/S0009-2614(97)00406-5 .

He Y, Hippler M, Quack M. High-resolution cavity ring-down absorption spectroscopy of nitrous oxide and chloroform using a near-infrared cw diode laser. Chem Phys Lett. 1998;289:527. https://doi.org/10.1016/S0009-2614(98)00424-2 .

Hippler M, Quack M. Cw cavity ring-down infrared absorption spectroscopy in pulsed supersonic jets: nitrous oxide and methane. Chem Phys Lett. 1999;314:273–81. https://doi.org/10.1016/S0009-2614(99)01071-4 .

Hippler M, Quack M. High-resolution Fourier transform infrared and cw-diode laser cavity ringdown spectroscopy of the ν2+2ν3band of methane near 7510 cm−1 in slit jet expansions and at room temperature. J Chem Phys. 2002;116:6045–55. https://doi.org/10.1063/1.1433505 .

Hippler M, Oeltjen L, Quack M. High-resolution continuous-wave-diode laser cavity ring-down spectroscopy of the hydrogen fluoride dimer in a pulsed slit jet expansion: two components of the N = 2 triad near 1.3 μm. J Phys Chem A. 2007;111:12659–68. https://doi.org/10.1021/jp076894s .

Sigrist MW. Air monitoring by laser photoacoustic spectroscopy, chapter 4. In: Sigrist MW, editor. Air monitoring by spectroscopic techniques, chemical analysis series 127. New York: Wiley; 1994.

Miklós A, Hess P. Application of acoustic resonators in photoacoustic trace gas analysis and metrology. Rev Sci Instrum. 2001;72:1937. https://doi.org/10.1063/1.1353198 .

Busse G, Herboeck D. Differential Helmholtz resonator as an optoacoustic detector. Appl Opt. 1979;18:3959–61.

Zeninari V, Courtois D, Parvitte B, Kapitanov VA, Ponomarev YN. Methane detection on the sub-ppm level with a near-infrared diode laser photoacoustic sensor. Infrared Phys Technol. 2003;44:253. https://doi.org/10.1016/S1350-4495(03)00135-X .

Rouxel J, Coutard JG, Gidon S, Lartigue O, Nicoletti S, Parvitte B, et al. Miniaturized differential Helmholtz resonators for photoacoustic trace gas detection. Sensors Actuators B. 2016;236:1104–10. https://doi.org/10.1016/j.snb.2016.06.074 .

Alahmari S, Hippler M. Helmholtz resonator diode laser photoacoustic spectroscopy for trace gas analysis in the environment and the biosciences. Advanced Photonics 2018, OSA Technical Digest paper SeM2J.4. https://doi.org/10.1364/SENSORS.2018.SeM2J.4 .

Cattaneo H, Laurila T, Hernberg R. Photoacoustic detection of oxygen using cantilever enhanced technique. Appl Phys B Lasers Opt. 2006;85:337–41. https://doi.org/10.1007/s00340-006-2336-5 .

Laurila T, Cattaneo H, Pöyhönen T, Koskinen V, Kauppinen J, Hernberg R. Cantilever-based photoacoustic detection of carbon dioxide using a fiber-amplified diode laser. Appl Phys B Lasers Opt. 2006;83:285; Ibid., 669. https://doi.org/10.1007/s00340-005-2106-9 .

Hippler M, Mohr C, Keen K, McNaghten E. Cavity-enhanced resonant photoacoustic spectroscopy with optical feedback cw diode lasers: a novel technique for ultratrace gas analysis and high-resolution spectroscopy. J Chem Phys. 2010;133:044308 (1–8. https://doi.org/10.1063/1.3461061 .

Kachanov A, Koulikov S, Tittel FK. Cavity-enhanced optical feedback-assisted photo-acoustic spectroscopy with a 10.4 μm external cavity quantum cascade laser. Appl Phys B Lasers Opt. 2013;110:47–56. https://doi.org/10.1007/s00340-012-5250-z .

Gordon IE, Rothman LS, Hill C, Kochanov RV, Tan Y, Bernath PF, et al. The HITRAN2016 molecular spectroscopic database. J Quant Spectrosc Radiat Transf. 2017;203:3–69. https://doi.org/10.1016/j.jqsrt.2017.06.038 .

www.webbook.nist.gov/chemistry . Accessed 16 Oct 2018.

Moser H, Pölz W, Waclawek JP, Ofner J, Lendl B. Implementation of a quantum cascade laser-based gas sensor prototype for sub-ppmv H2S measurements in a petrochemical process gas stream. Anal Bioanal Chem. 2017;409:729–39. https://doi.org/10.1007/s00216-016-9923-z .

Tütüncü E, Mizaikoff B. Cascade laser sensing concepts for advanced breath diagnostics. Anal Bioanal Chem. 2019;411:1679–86. https://doi.org/10.1007/s00216-018-1509-5 .