Dining in the Deep: The Feeding Ecology of Deep-Sea Fishes

Annual Review of Marine Science - Tập 9 Số 1 - Trang 337-366 - 2017
Jeffrey C. Drazen1, Tracey Sutton2
1Department of Oceanography, University of Hawaii at Manoa, Honolulu, Hawaii 96822
2Halmos College of Natural Sciences and Oceanography, Nova Southeastern University, Dania Beach, Florida 33004;

Tóm tắt

Deep-sea fishes inhabit ∼75% of the biosphere and are a critical part of deep-sea food webs. Diet analysis and more recent trophic biomarker approaches, such as stable isotopes and fatty-acid profiles, have enabled the description of feeding guilds and an increased recognition of the vertical connectivity in food webs in a whole-water-column sense, including benthic-pelagic coupling. Ecosystem modeling requires data on feeding rates; the available estimates indicate that deep-sea fishes have lower per-individual feeding rates than coastal and epipelagic fishes, but the overall predation impact may be high. A limited number of studies have measured the vertical flux of carbon by mesopelagic fishes, which appears to be substantial. Anthropogenic activities are altering deep-sea ecosystems and their services, which are mediated by trophic interactions. We also summarize outstanding data gaps.

Từ khóa


Tài liệu tham khảo

10.2989/18142320509504100

10.2989/18142320509504116

10.1016/S1546-5098(08)60226-5

Angel MV, Baker AC. 1982. Vertical distribution of the standing crop of plankton and micronekton at three stations in the northeast Atlantic. Biol. Oceanogr. 2:1–30

Arai MN, Welch DW, Dunsmuir AL, Jacobs MC, Ladouceur AR. 2003. Digestion of pelagic Ctenophora and Cnidaria by fish. Can. J. Fish. Aquat. Sci. 60:825–29

10.1098/rspb.2009.0098

10.3354/meps005021

Balanov AA, Gorbatenko KM, Efimkin A. 1995. Foraging dynamics of mesopelagic fishes in the Bering Sea during summer and autumn. J. Ichthyol. 35:65–77

Barnes C, Maxwell D, Reuman DC, Jennings S. 2010. Global patterns in predator-prey size relationships reveal size dependency of trophic transfer efficiency. Ecology 91:222–32

Barry JP, Buck KR, Lovera C, Brewer PG, Seibel BA, et al. 2013. The response of abyssal organisms to low pH conditions during a series of CO2-release experiments simulating deep-sea carbon sequestration. Deep-Sea Res. I 92:249–60

Bergmann M, Dannheim J, Bauerfeind E, Klages M. 2009. Trophic relationships along a bathymetric gradient at the deep-sea observatory HAUSGARTEN. Deep-Sea Res. I 56:408–24

Bergstad OA, Clark L, Hansen HØ, Cousins N. 2012. Distribution, population biology, and trophic ecology of the deepwater demersal fishHalosauropsis macrochir(Pisces: Halosauridae) on the Mid-Atlantic Ridge. PLOS ONE 7:e31493

Bergstad OA, Gjelsvik G, Schander C, Høines ÅS. 2010. Feeding ecology ofCoryphaenoides rupestrisfrom the Mid-Atlantic Ridge. PLOS ONE 5:e10453

10.1007/s00227-012-2064-9

10.1016/j.pocean.2015.03.005

Billett DSM, Bett BJ, Jacobs CL, Rouse IP, Wigham BD. 2006. Mass deposition of jellyfish in the deep Arabian Sea. Limnol. Oceanogr. 51:2077–83

Bjelland O, Bergstad OA, Skjaeraasen JE, Meland K. 2000. Trophic ecology of deep-water fishes associated with the continental slope of the eastern Norwegian Sea. Sarsia 85:101–17

Blaber SJM, Bulman CM. 1987. Diets of fishes of the upper continental slope of eastern Tasmania: content, calorific values, dietary overlap and trophic relationships. Mar. Biol. 95:345–56

Blum JD, Popp BN, Drazen JC, Choy CA, Johnson MW. 2013. Methylmercury production below the mixed layer in the North Pacific Ocean. Nat. Geosci. 6:879–84

Boerger CM, Lattin GL, Moore SL, Moore CJ. 2010. Plastic ingestion by planktivorous fishes in the North Pacific Central Gyre. Mar. Pollut. Bull. 60:2275–78

Boyle MD, Ebert DA, Cailliet GM. 2012. Stable-isotope analysis of a deep-sea benthic-fish assemblage: evidence of an enriched benthic food web. J. Fish Biol. 80:1485–507

Britton JC, 1994, Oceanography and Marine Biology: An Annual Review, 32, 369

Bromley PJ. 1994. The role of gastric evacuation experiments in quantifying the feeding rates of predatory fish. Rev. Fish Biol. Fish. 4:36–66

Buckley TW, Tyler GE, Smith DM, Livingston PA. 1999. Food habits of some commercially important groundfish off the coasts of California, Oregon, Washington, and British Columbia. NOAA Tech. Memo. NMFS-AFSC-102, Natl. Ocean. Atmos. Adm., US Dep. Commer., Springfield, VA

Bulman CM, Koslow JA. 1992. Diet and food consumption of a deep-sea fish, orange roughyHoplostethus atlanticus(Pisces: Trachichthyidae), off southeastern Australia. Mar. Ecol. Prog. Ser. 82:115–29

Campbell RA, Haedrich RL, Munroe TA. 1980. Parasitism and ecological relationships among deep-sea benthic fishes. Mar. Biol. 57:301–13

10.3354/meps241041

Carrasson M, Matallanas J. 1998. Feeding habits ofAlepocephalus rostratus(Pisces: Alepocephalidae) in the western Mediterranean Sea. J. Mar. Biol. Assoc. UK 78:1295–306

Carrasson M, Matallanas J. 2001. Feeding ecology of the Mediterranean spiderfish,Bathypterois mediterraneus(Pisces: Chlorophthalmidae), on the western Mediterranean slope. Fish. Bull. 99:266–74

Carrasson M, Matallanas J. 2002a. Feeding habits ofCataetyx alleni(Pisces: Bythitidae) in the deep western Mediterranean. Sci. Mar. 66:417–21

Carrasson M, Matallanas J. 2002b. Feeding strategies ofPolyacanthonotus rissoanus(Pisces: Notacanthidae) in the deep western Mediterranean. J. Mar. Biol. Assoc. UK 82:665–71

Carrasson M, Matallanas J, Casadevall M. 1997. Feeding strategies of deep-water morids on the western Mediterranean slope. Deep-Sea Res. I 44:1685–99

Carrasson M, Stefanescu C, Cartes JE. 1992. Diets and bathymetric distributions of two bathyal sharks of the Catalan deep sea (western Mediterranean). Mar. Ecol. Prog. Ser. 82:21–30

Chikaraishi Y, Ogawa NO, Kashiyama Y, Takano Y, Suga H, et al. 2009. Determination of aquatic food-web structure based on compound-specific nitrogen isotopic composition of amino acids. Limnol. Oceanogr. Methods 7:740–50

Childress JJ, Taylor SM, Cailliet GM, Price MH. 1980. Patterns of growth, energy utilization and reproduction in some meso- and bathypelagic fishes off southern California. Mar. Biol. 61:27–40

Choy CA, Davison PC, Drazen JC, Flynn A, Gier EJ, et al. 2012. Global trophic position comparison of two dominant mesopelagic fish families (Myctophidae, Stomiidae) using amino acid nitrogen isotopic analyses. PLOS ONE 7:e50133

Choy CA, Drazen JC. 2013. Plastic for dinner? Frequent debris ingestion by large pelagic fishes from the central North Pacific subtropical gyre. Mar. Ecol. Prog. Ser. 485:155–63

10.1002/lno.10085

10.1073/pnas.0900711106

Choy CA, Portner E, Iwane M, Drazen JC. 2013. Diets of five important predatory mesopelagic fishes of the central North Pacific. Mar. Ecol. Prog. Ser. 492:169–84

Choy CA, Wabnitz CCC, Weijerman M, Woodworth-Jefcoats PA, Polovina JJ. 2016. Finding the way to the top: how the composition of oceanic mid-trophic micronekton groups determines apex predator biomass in the central North Pacific. Mar. Ecol. Prog. Ser. 549:9–25

Churchill DA, Heithaus MR, Grubbs RD. 2015a. Effects of lipid and urea extraction on δ15N values of deep-sea sharks and hagfish: Can mathematical correction factors be generated? Deep-Sea Res. II 115:103–8

10.1016/j.dsr2.2014.10.011

10.1002/9780470691953.ch17

Clarke TA, 1978, Fish. Bull., 76, 495

Clarke TA. 1982. Feeding habits of stomiatoid fishes from Hawaiian waters. Fish. Bull. 80:287–304

Collins MA, Bailey DM, Ruxton GD, Priede IG. 2005. Trends in body size across an environmental gradient: a differential response in scavenging and non-scavenging demersal deep-sea fish. Proc. R. Soc. B 272:2051–57

Conley WJ, Hopkins TL. 2004. Feeding ecology of lanternfish (Pisces: Myctophidae) larvae: prey preferences as a reflection of morphology. Bull. Mar. Sci. 75:361–79

Cook AB, Sutton TT, Galbraith JK, Vecchione M. 2013. Deep-pelagic (0–3000 m) fish assemblage structure over the Mid-Atlantic Ridge in the area of the Charlie-Gibbs Fracture Zone. Deep-Sea Res. II 98:279–91

10.1016/0198-0149(91)90027-D

10.1016/0198-0149(86)90019-1

10.1016/S0065-2881(03)46005-7

Davison PC, Asch RG. 2011. Plastic ingestion by mesopelagic fishes in the North Pacific Subtropical Gyre. Mar. Ecol. Prog. Ser. 432:173–80

10.1016/j.pocean.2013.05.013

Davison PC, Lara-Lopez A, Koslow JA. 2015. Mesopelagic fish biomass in the southern California Current ecosystem. Deep-Sea Res. II 112:129–42

Drazen JC. 2002. Energy budgets and feeding rates ofCoryphaenoides acrolepisandC. armatus. Mar. Biol. 140:677–86

Drazen JC, Bailey DM, Ruhl H, Smith KL Jr. 2012. The role of carrion supply in the abundance of deep-water fish off California. PLOS ONE 7:e49332

Drazen JC, Buckley TW, Hoff GR. 2001. The feeding habits of slope dwelling macrourid fishes in the eastern North Pacific. Deep-Sea Res. I 48:909–35

Drazen JC, Haedrich RL. 2012. A continuum of life histories in deep-sea demersal fishes. Deep-Sea Res. I 61:34–42

Drazen JC, Phleger CF, Guest MA, Nichols PD. 2009. Lipid compositions and diet inferences in abyssal macrourids of the eastern North Pacific. Mar. Ecol. Prog. Ser. 387:1–14

Drazen JC, Popp BN, Choy CA, Clemente T, De Forest LG, Smith KL Jr. 2008. Bypassing the abyssal benthic food web: macrourid diet in the eastern North Pacific inferred from stomach content and stable isotopes analyses. Limnol. Oceanogr. 53:2644–54

Drazen JC, Seibel BA. 2007. Depth-related trends in metabolism of benthic and benthopelagic deep-sea fishes. Limnol. Oceanogr. 52:2306–16

Dunn MR, Griggs L, Forman J, Horn P. 2010. Feeding habits and niche separation among the deep-sea chimaeroid fishesHarriotta raleighana,Hydrolagus bemisiandHydrolagus novaezealandiae. Mar. Ecol. Prog. Ser. 407:209–25

Ebeling AW, Cailliet GM. 1974. Mouth size predator strategy of midwaters fishes.Deep-Sea Res. Oceanogr. Abstr. 21:959–68

Ebert DA, Bizzarro JJ. 2007. Standardized diet compositions and trophic levels of skates (Chondrichthyes: Rajiformes: Rajoidei). Environ. Biol. Fishes 80:221–37

Fanelli E, Cartes JE. 2010. Temporal variations in the feeding habits and trophic levels of three deep-sea demersal fishes from the western Mediterranean Sea, based on stomach contents and stable isotope analyses. Mar. Ecol. Prog. Ser. 402:213–32

Fanelli E, Cartes JE, Papiol V. 2011. Food web structure of deep-sea macrozooplankton and micronekton off the Catalan slope: insight from stable isotopes. J. Mar. Syst. 87:79–89

Fanelli E, Cartes JE, Papiol V, López-Pérez C. 2013. Environmental drivers of megafaunal assemblage composition and biomass distribution over mainland and insular slopes of the Balearic Basin (Western Mediterranean). Deep-Sea Res. I 78:79–94

Feagans-Bartow JN, Sutton TT. 2014. Ecology of the oceanic rim: pelagic eels as key ecosystem components. Mar. Ecol. Prog. Ser. 502:257–66

Feller RJ, Zagursky G, Day EA. 1985. Deep-sea food web analysis using cross-reacting antisera. Deep-Sea Res. A 32:485–97

Ferry LA. 1997. Food habits of the two-line eelpout (Bothrocara brunneum: Zoarcidae) at two deep-sea sites in the eastern North Pacific. Deep-Sea Res. I 44:521–31

Flynn AJ, Kloser RJ. 2012. Cross-basin heterogeneity in lanternfish (family Myctophidae) assemblages and isotopic niches (δ13C and δ15N) in the southern Tasman Sea abyssal basin. Deep-Sea Res. I 69:113–27

10.3354/meps244219

10.1016/S1546-5098(08)60229-0

Gartner JV, Musick JA. 1989. Feeding habits of the deep-sea fishScopelogadus beanii(Pisces: Melamphaidae), in the western North Atlantic. Deep-Sea Res. I 36:1457–68

Gilly WF, Beman JM, Litvin SY, Robison BH. 2013. Oceanographic and biological effects of shoaling of the oxygen minimum zone. Annu. Rev. Mar. Sci. 5:393–420

Gjosaeter J, Kawaguchi K. 1980. A review of the world resources of mesopelagic fish. Fish. Tech. Paper 193, Food Agric. Organ. UN, Rome

10.1017/S0025315400030691

Haedrich RL. 1967. The stromateoid fishes: systematics and a classification. Bull. Mus. Comp. Zool. Harv. Coll. 135:31–139

Hannides CCS, Popp BN, Choy CA, Drazen JC. 2013. Midwater zooplankton and suspended particle dynamics in the North Pacific Subtropical Gyre: a stable isotope perspective. Limnol. Oceanogr. 58:1931–46

Heroux D, Magnan P. 1996. In situ determination of food daily ration in fish: review and field evaluation. Environ. Biol. Fishes 46:61–74

Herring PJ, 2002, The Biology of the Deep Ocean

Hirch S, Christiansen B. 2010. The trophic blockage hypothesis is not supported by the diets of fishes on Seine Seamount. Mar. Ecol. 31:107–20

Hoff GR, Buckley TW, Drazen JC, Duncan KM. 2000. Biology and ecology ofNezumia liolepisandN. stelgidolepisfrom the west coast of North America. J. Fish Biol. 57:662–80

Hoffman JC, Sutton TT. 2010. Lipid correction for carbon stable isotope analysis of deep-sea fishes. Deep-Sea Res. I 57:956–64

Hopkins TL, 1977, Oceanic Sound Scattering Prediction, 325

Hopkins TL, Baird RC. 1985. Aspects of the trophic ecology of the mesopelagic fishLampanyctus alatus(Family Myctophidae) in the eastern Gulf of Mexico. Biol. Oceanogr. 3:285–313

10.1007/BF00349518

Hopkins TL, Sutton TT, Lancraft TM. 1996. The trophic structure and predation impact of a low latitude midwater fish assemblage. Prog. Oceanogr. 38:205–39

Horn PL, Forman J, Dunn MR. 2010. Feeding habits of alfonsinoBeryx splendens. J. Fish Biol. 76:2382–400

Hudson JM, Steinberg DK, Sutton TT, Graves JE, Latour RJ. 2014. Myctophid feeding ecology and carbon transport along the northern mid-Atlantic ridge. Deep-Sea Res. I 93:104–16

Huntley ME, Lopez MDG, Karl DM. 1991. Top predators in the Southern Ocean: a major leak in the biological carbon pump. Science 253:64–66

Iken K, Brey T, Wand U, Voight J, Junghans P. 2001. Food web structure of the benthic community at the Porcupine Abyssal Plain (NE Atlantic): a stable isotope analysis. Prog. Oceanogr. 50:383–405

Irigoien X, Klevjer TA, Røstad A, Martinez U, Boyra G, et al. 2014. Large mesopelagic fishes biomass and trophic efficiency in the open ocean. Nat. Commun. 5:3271

Jamieson A, Fujii T, Solan M, Matsumoto AK, Bagley PM, Priede IG. 2009. Liparid and macrourid fishes of the hadal zone: in situ observations of activity and feeding behaviour. Proc. R. Soc. B 276:1037–45

Jones DOB, Yool A, Wei C-L, Henson SA, Ruhl HA, et al. 2014. Global reductions in seafloor biomass in response to climate change. Glob. Change Biol. 20:1861–72

Jones MRL. 2008a. Biology and diet ofCoryphaenoides subserrulatusandEtmopterus baxterifrom the Puysegur region, southern New Zealand. N.Z. J. Mar. Freshw. Res. 42:333–37

Jones MRL. 2008b. Dietary analysis ofCoryphaenoides serrulatus,C. subserrulatusand several other species of macrourid fish (Pisces: Macrouridae) from northeastern Chatham Rise, New Zealand. N.Z. J. Mar. Freshw. Res. 42:73–84

10.1016/j.dsr.2013.04.011

Jones MRL, Breen BB. 2014. Role of scavenging in a synaphobranchid eel (Diastobranchus capensis, Barnard, 1923), from northeastern Chatham Rise, New Zealand. Deep-Sea Res. I 85:118–23

Kaartvedt S, Staby A, Aksnes DL. 2012. Efficient trawl avoidance by mesopelagic fishes causes large underestimation of their biomass. Mar. Ecol. Prog. Ser. 456:1–6

10.1111/j.1095-8312.2012.01854.x

King NJ, Bailey DM, Priede IG. 2007. Role of scavengers in marine ecosystems: introduction. Mar. Ecol. Prog. Ser. 350:175–78

Kinzer J, Schulz K. 1985. Vertical distribution and feeding patterns of midwater fish in the central equatorial Atlantic. Mar. Biol. 85:313–22

10.1134/S003294520608008X

10.1111/j.1095-8649.1996.tb06067.x

Koslow JA, Boehlert GW, Gordon JD, Haedrich RL, Lorance P, Parin N. 2000. Continental slope and deep-sea fisheries: implications for a fragile ecosystem. ICES J. Mar. Sci. 57:548–57

Koslow JA, Davison P, Lara-Lopez A, Ohman MD. 2014. Epipelagic and mesopelagic fishes in the southern California Current System: ecological interactions and oceanographic influences on their abundance. J. Mar. Syst. 138:20–28

Koslow JA, Kloser RJ, Williams A. 1997. Pelagic biomass and community structure over the mid-continental slope off southeastern Australia based upon acoustic and midwater trawl sampling. Mar. Ecol. Prog. Ser. 146:21–35

Lampitt RS, Merrett NR, Thurston MH. 1983. Inter-relations of necrophagous amphipods, a fish predator, and tidal currents in the deep sea. Mar. Biol. 74:73–78

Laxson CJ, Condon NE, Drazen JC, Yancey PH. 2011. Decreasing urea:trimethylamine N-oxide ratios with depth in chondrichthyes: a physiological depth limit? Physiol. Biochem. Zool. 84:494–505

Lee CC, 2008, Grenadiers of the World Oceans: Biology, Stock Assessment, and Fisheries, 185

10.1016/j.dsr.2016.05.003

Livingston PA, Goiney BJ. 1984. Bibliography on daily food ration of fishes, NOAA Tech. Memo. NMFS F/NWC-63, Natl. Ocean. Atmos. Adm., US Dep. Commer., Springfield, VA

Locarnini RA, 2013, World Ocean Atlas 2013, 1

10.1073/pnas.1321626111

10.3354/meps225065

10.3354/meps026253

10.1007/s00227-004-1502-8

Madurell T, Cartes JE. 2005b. Trophodynamics of a deep-sea demersal fish assemblage from the bathyal eastern Ionian Sea (Mediterranean Sea). Deep-Sea Res. I 52:2049

Madurell T, Cartes JE. 2006. Trophic relationships and food consumption of slope dwelling macrourids from the bathyal Ionian Sea (eastern Mediterranean). Mar. Biol. 148:1325

Marshall NB. 1965. Systematic and biological studies of the macrourid fishes (Anacanthini-Teleostii). Deep-Sea Res.Oceanogr. Abstr. 12:299–322

Martin B, Christiansen B. 1997. Diets and standing stocks of benthopelagic fishes at two bathymetrically different midoceanic localities in the Northeast Atlantic. Deep-Sea Res. I 44:541–58

10.1007/978-94-011-5834-3_5

Mauchline J, Gordon JDM. 1980. The food and feeding of the deep-sea morid fishLepidion eques(Gunther, 1887) in the Rockall Trough. J. Mar. Biol. Assoc. UK 60:1053–59

Mauchline J, Gordon JDM. 1983a. Diets of clupeoid, stomiatoid and salmonoid fish of the Rockall Trough, northeastern Atlantic Ocean. Mar. Biol. 77:67–78

Mauchline J, Gordon JDM. 1983b. Diets of the sharks and chimaeroids of the Rockall Trough, northeastern Atlantic Ocean. Mar. Biol. 75:269–78

Mauchline J, Gordon JDM. 1984. Feeding and bathymetric distribution of the gadoid and morid fish of the Rockall Trough. J. Mar. Biol. Assoc. UK 64:657–65

10.3354/meps027227

Mauchline J, Gordon JDM. 1991. Oceanic pelagic prey of benthopelagic fish in the benthic boundary layer of a marginal oceanic region. Mar. Ecol. Prog. Ser. 74:109–15

Mayor DJ, Sharples CJ, Webster L, Walsham P, Lacaze J-P, Cousins NJ. 2013. Tissue and size-related changes in the fatty acid and stable isotope signatures of the deep sea grenadier fishCoryphaenoides armatusfrom the Charlie-Gibbs Fracture Zone region of the Mid-Atlantic Ridge. Deep-Sea Res. II 98:421–30

Miller TW, Brodeur RD, Rau GH. 2008. Carbon stable isotopes reveal relative contribution of shelf-slope production to the northern California Current pelagic community. Limnol. Oceanogr. 53:1493–503

Mintenbeck K, Jacob U, Knust R, Arntz WE, Brey T. 2007. Depth-dependence in stable isotope ratio δ15N of benthic POM consumers: the role of particle dynamics and organism trophic guild. Deep-Sea Res. I 54:1015–23

10.1111/jfb.12459

10.3354/meps207129

10.1002/9780470691953.ch9

Morato T, Watson R, Pitcher TJ, Pauly D. 2006. Fishing down the deep. Fish Fish. 7:24–34

Moser HG, Ahlstrom EH. 1996. Myctophidae: lanternfishes. In The Early Stages of Fishes in the California Current Region, ed. HG Moser, pp. 387–475. CalCOFI Atlas 33. Lawrence, KS: Allen

10.1007/s00227-014-2454-2

Norse EA, Brooke S, Cheung WWL, Clark MR, Ekeland I, et al. 2012. Sustainability of deep-sea fisheries. Mar. Policy 36:307–20

Olson RJ, Duffy LM, Kuhnert PM, Galván-Magaña F, Bocanegra-Castillo N, Alatorre-Ramírez V. 2014. Decadal diet shift in yellowfin tunaThunnus albacaressuggests broad-scale food web changes in the eastern tropical Pacific Ocean. Mar. Ecol. Prog. Ser. 497:157–78

10.3354/meps134001

10.1093/plankt/12.3.519

Papiol V, Cartes JE, Fanelli E, Rumolo P. 2013. Food web structure and seasonality of slope megafauna in the NW Mediterranean elucidated by stable isotopes: relationship with available food sources. J. Sea Res. 77:53–69

Paquin MM, Buckley TW, Hibpshman RE, Canino MF. 2014. DNA-based identification methods of prey fish from stomach contents of 12 species of eastern North Pacific groundfish. Deep-Sea Res. I 85:110–17

10.1029/2005GL025098

Paxton JR. 1967. Biological notes on southern California lanternfishes (family Myctophidae). Calif. Fish Game 53:214–17

Pearcy WG, 1974, Deep-Sea Res, 21, 745

Peterson BJ, Fry B. 1987. Stable isotopes in ecosystem studies. Annu. Rev. Ecol. Syst. 18:293–320

Pethybridge H, Butler ECV, Cossa D, Daley R, Boudou A. 2012. Trophic structure and biomagnification of mercury in an assemblage of deepwater chondrichthyans from southeastern Australia. Mar. Ecol. Prog. Ser. 451:163–74

Pethybridge H, Daley RK, Nichols PD. 2011. Diet of demersal sharks and chimaeras inferred by fatty acid profiles and stomach content analysis. J. Exp. Mar. Biol. Ecol. 409:290–99

10.3354/meps220013

Post DM. 2002. Using stable isotopes to estimate trophic position: models, methods, and assumptions. Ecology 83:703–18

Priede IG, Froese R, Bailey DM, Bergstad OA, Collins MA, et al. 2006. The absence of sharks from abyssal regions of the world's oceans. Proc. R. Soc. B 273:1435–41

Priede IG, Godbold JA, King NJ, Collins MA, Bailey DM, Gordon JDM. 2010. Deep-sea demersal fish species richness in the Porcupine Seabight, NE Atlantic Ocean: global and regional patterns. Mar. Ecol. 31:247–60

Purcell JE, Arai MN. 2001. Interactions of pelagic cnidarians and ctenophores with fish: a review. Hydrobiologia 451:27–44

10.1016/j.dsr.2004.06.008

Ramirez-Llodra E, Tyler PA, Baker MC, Bergstad OA, Clark MR, et al. 2011. Man and the last great wilderness: human impact on the deep sea. PLOS ONE 6:e22588

Reid WDK, Sweeting CJ, Wigham BD, McGill RAR, Polunin NVC. 2013. High variability in spatial and temporal size-based trophodynamics of deep-sea fishes from the Mid-Atlantic Ridge elucidated by stable isotopes. Deep-Sea Res. II 98:412–20

Robinson C, Steinberg DK, Anderson TR, Aristegui J, Carlson CA, et al. 2010. Mesopelagic zone ecology and biogeochemistry—a synthesis. Deep-Sea Res. II 57:1504–18

10.1007/BF00392995

Robison BH. 2004. Deep pelagic biology. J. Exp. Mar. Biol. Ecol. 300:253–72

Rochman CM, Hoh E, Kurobe T, Teh SJ. 2013. Ingested plastic transfers hazardous chemicals to fish and induces hepatic stress. Sci. Rep. 3:1–7

Romero-Romero S, Molina-Ramírez A, Höfer J, Acuña JL. 2016. Body size-based trophic structure of a deep marine ecosystem. Ecology 97:171–81

10.1016/j.dsr2.2013.01.025

Ruxton GD, Bailey DM. 2005. Searching speeds and the energetic feasibility of an obligate whale-scavenging fish. Deep-Sea Res. I 52:1536

10.1016/j.pocean.2012.02.002

Sabatés A, Bozzano A, Vallvey I. 2003. Feeding pattern and the visual light environment in myctophid fish larvae. J. Fish Biol. 63:1476–90

Saldanha L, Almeida AJ, Andrade F, Guerreiro J. 1995. Observations on the diet of some slope dwelling fishes of southern Portugal. Int. Rev. Gesamten Hydrobiol. 80:217–34

Santos AR, Trueman C, Connolly P, Rogan E. 2013. Trophic ecology of black scabbardfish,Aphanopus carboin the NE Atlantic—assessment through stomach content and stable isotope analyses. Deep-Sea Res. I 77:1–10

Sassa C, Kawaguchi K. 2005. Larval feeding habits ofDiaphus theta,Protomyctophum thompsoni, andTarletonbeania taylori(Pisces: Myctophidae) in the transition region of the western North Pacific. Mar. Ecol. Prog. Ser. 298:261–76

Schlining K, von Thun S, Kuhnz L, Schlining B, Lundsten L, et al. 2013. Debris in the deep: using a 22-year video annotation database to survey marine litter in Monterey Canyon, central California, USA. Deep-Sea Res. I 79:96–105

Schnell NK, Britz R, Johnson GD. 2010. New insights into the complex structure and ontogeny of the occipito-vertebral gap in barbeled dragonfishes (Stomiidae, Teleostei). J. Morphol. 271:1006–22

Sedberry GR, Musick JA. 1978. Feeding strategies of some demersal fishes of the continental slope and rise off the Mid-Atlantic coast of the USA. Mar. Biol. 44:357–75

10.1007/BF00401564

10.1073/pnas.0908322106

10.1073/pnas.1315447110

Smith KL Jr., Sherman AD, Huffard CL, McGill PR, Henthorn R, et al. 2014. Large salp bloom export from the upper ocean and benthic community response in the abyssal northeast Pacific: day to week resolution. Limnol. Oceanogr. 59:745–57

Solmundsson J. 2007. Trophic ecology of Greenland halibut (Reinhardtius hippoglossoides) on the Icelandic continental shelf and slope. Mar. Biol. Res. 3:231–42

Steinberg DK, Carlson CA, Bates NR, Goldthwait SA, Madin LP, Michaels AF. 2000. Zooplankton vertical migration and the active transport of dissolved organic and inorganic carbon in the Sargasso Sea. Deep-Sea Res. I 47:137–58

10.1016/0198-0149(82)90106-6

Stonik VA, Kalinin VI, Avilov SA. 1999. Toxins from sea cucumbers (holothuroids): chemical structures, properties, taxonomic distribution, biosynthesis and evolution. J. Nat. Toxins 8:235–48

10.1007/s00227-009-1256-4

Sulak KJ, Wenner CA, Sedberry GR, Van Guelpen L. 1985. The life history and systematics of deep-sea lizard fishes, genusBathysaurus(Synodontidae). Can. J. Zool. 63:623–42

Suntsov AV, Brodeur RD. 2008. Trophic ecology of three dominant myctophid species in the northern California Current region. Mar. Ecol. Prog. Ser. 373:81–96

Sutton TT. 2013. Vertical ecology of the pelagic ocean: classical patterns and new perspectives. J. Fish Biol. 83:1508–27

Sutton TT, Hopkins TL. 1996. Species composition, abundance, and vertical distribution of the stomiid (Pisces: Stomiiformes) fish assemblage of the Gulf of Mexico. Bull. Mar. Sci. 59:530–42

Sutton TT, Hopkins TL, Lancraft TM. 1998. Trophic diversity of a midwater fish community. In Pelagic Biogeography ICoPB II: Proceedings of the 2nd International Conference, ed. AC Pierrot-Bults, S van der Spoel, pp. 353–57 IOC Workshop Rep. 142. Paris: UN Educ. Sci. Cult. Organ.

Sutton TT, Porteiro FM, Heino M, Byrkjedal I, Langhelle G, et al. 2008. Vertical structure, biomass and topographic association of deep-pelagic fishes in relation to a mid-ocean ridge system. Deep-Sea Res. II 55:161–84

10.1098/rspb.2014.2210

10.1007/s00227-008-1115-8

Tamburri MN, Barry JP. 1999. Adaptations for scavenging by three diverse bathyal species,Eptatretus stouti,Neptunea amiantaandOrchomene obtusus. Deep-Sea Res. I 46:2079–93

10.1242/jeb.128108

Trueman CN, Johnston G, O'Hea B, MacKenzie KM. 2014. Trophic interactions of fish communities at midwater depths enhance long-term carbon storage and benthic production on continental slopes. Proc. R. Soc. B 281:20140669

Valentim MFM, Caramaschi EP, Vianna M. 2008. Feeding ecology of monkfishLophius gastrophysusin the south-western Atlantic Ocean. J. Mar. Biol. Assoc. UK 88:205–12

10.1016/j.jmarsys.2014.04.007

10.1016/j.jmarsys.2014.04.002

Van Noord JE, Olson RJ, Redfern JV, Kaufmann RS. 2013. Diet and prey selectivity in three surface-migrating myctophids in the eastern tropical Pacific. Ichthyol. Res. 60:287–90

Vecchione M, Roper CF. 1991. Cephalopods observed from submersibles in the western North Atlantic. Bull. Mar. Sci. 49:433–45

Warrant EJ, Locket NA. 2004. Vision in the deep-sea. Biol. Rev. Camb. Philos. Soc. 79:671–712

10.1046/j.1444-2906.2003.00678.x

Webb TJ, Berghe EV, O'Dor R. 2010. Biodiversity's big wet secret: the global distribution of marine biological records reveals chronic under-exploration of the deep pelagic ocean. PLOS ONE 5:e10223

Wedding LM, Reiter SM, Smith CR, Gjerde KM, Kittinger JN, et al. 2015. Managing mining of the deep seabed. Science 349:144–45

Wei C-L, Rowe GT, Escobar-Briones E, Boetius A, Soltwedel T, et al. 2010. Global patterns and predictions of seafloor biomass using random forests. PLOS ONE 5:e15323

10.1007/s002270100671

10.1126/science.1157972

Woodall LC, Sanchez-Vidal A, Canals M, Paterson GLJ, Coppock R, et al. 2014. The deep sea is a major sink for microplastic debris. R. Soc. Open Sci. 1:140317

Würzberg L, Peters J, Flores H, Brandt A. 2011. Demersal fishes from the Antarctic shelf and deep sea: a diet study based on fatty acid patterns and gut content analyses. Deep-Sea Res. II 58:2036–42

Yancey PH, Gerringer ME, Drazen JC, Rowden AA, Jamieson AJ. 2014. Are marine fish biochemically constrained from inhabiting the deepest ocean depths? PNAS 111:4461–65

Yeh J, Drazen JC. 2011. Baited-camera observations of deep-sea megafaunal scavenger ecology on the California slope. Mar. Ecol. Prog. Ser. 424:145–56

Young JW, Hunt BPV, Cook TR, Llopiz JK, Hazen EL, et al. 2015. The trophodynamics of marine top predators: current knowledge, recent advances and challenges. Deep-Sea Res. II 113:170–87

Zapata-Hernandez G, Sellanes J, Thurber AR, Levin LA, Chazalon F, Linke P. 2014. New insights on the trophic ecology of bathyal communities from the methane seep area off Concepcion, Chile (36°S). Mar. Ecol. 35:1–21

Zintzen V, Roberts CD, Anderson MJ, Stewart AL, Struthers CD, Harvey ES. 2011. Hagfish predatory behaviour and slime defence mechanism. Sci. Rep. 1:131