Dimension reduction using kernel collaborative representation based projection
Tài liệu tham khảo
Dianat, 2010, Dimension reduction of remote sensing images by incorporating spatial and spectral properties, AEU – Int J Electron Commun, 64, 729, 10.1016/j.aeue.2009.10.001
Turk MA, Pentland AP. Face recognition using eigenfaces, Computer Vision and Pattern Recognition, 1991. Proceedings CVPR '91., IEEE Computer Society Conference on 1991, p. 586–91.
Belhumeur PN, Hespanha JP, Kriegman D. Eigenfaces vs. fisherfaces: recognition using class specific linear projection. IEEE Trans. Pattern Anal. Mach. Intell. 1997;19:711–20.
Scholkopf, 1998, Nonlinear component analysis as a kernel eigenvalue problem, Neural Comput., 10, 1299, 10.1162/089976698300017467
Duan, 2013, Registration of remote-sensing images using robust weighted kernel principal component analysis, AEU - Int J Electron Commun, 67, 20, 10.1016/j.aeue.2012.05.011
Mika S, Ratsch G, Weston J, Scholkopf B, Muller K. Fisher discriminant analysis with kernels, Neural Networks for Signal Processing IX, 1999. Proceedings of the 1999 IEEE Signal Processing Society Workshop; 1999, p. 41–8.
Roweis, 2000, Nonlinear dimensionality reduction by locally linear embedding, Science, 290, 2323, 10.1126/science.290.5500.2323
Tenenbaum, 2000, A global geometric framework for nonlinear dimensionality reduction, Science, 290, 2319, 10.1126/science.290.5500.2319
Belkin, 2003, Laplacian eigenmaps for dimensionality reduction and data representation, Neural Comput., 15, 1373, 10.1162/089976603321780317
X. He, D. Cai, S. Yan, H.-J. Zhang, Neighborhood preserving embedding, Computer Vision, 2005. ICCV 2005. Tenth IEEE International Conference on, (IEEE2005), p. 1208–13.
He, 2005, Face recognition using Laplacianfaces, IEEE Trans Pattern Anal Mach Intell, 27, 328, 10.1109/TPAMI.2005.55
Cai, 2007, Isometric projection, Proceedings of the National Conference on Artificial Intelligence, 528
Feng, 2006, An alternative formulation of kernel LPP with application to image recognition, Neurocomputing, 69, 1733, 10.1016/j.neucom.2006.01.006
Yang, 2007, Globally maximizing, locally minimizing: unsupervised discriminant projection with applications to face and palm biometrics, IEEE Trans. Pattern Anal. Mach. Intell., 29, 650, 10.1109/TPAMI.2007.1008
Hwann-Tzong C, Huang-Wei C, Tyng-Luh L. Local discriminant embedding and its variants, Computer Vision and Pattern Recognition, 2005. CVPR 2005. IEEE Computer Society Conference on, vol. 842; 2005, p. 846–53.
Shuicheng, 2007, Graph embedding and extensions: a general framework for dimensionality reduction, IEEE Trans. Pattern Anal Mach Intell, 29, 40, 10.1109/TPAMI.2007.250598
Yang, 2011, A multi-manifold discriminant analysis method for image feature extraction, Pattern Recogn., 44, 1649, 10.1016/j.patcog.2011.01.019
Huang, 2015, Local similarity preserving projections for face recognition, AEU - Int J Electron Commun, 69, 1724, 10.1016/j.aeue.2015.08.009
Aharon, 2006, K-SVD: an algorithm for designing overcomplete dictionaries for sparse representation, IEEE Trans. Signal Process., 54, 4311, 10.1109/TSP.2006.881199
Wright, 2009, Robust face recognition via sparse representation, IEEE Trans Pattern Anal Mach Intell, 31, 210, 10.1109/TPAMI.2008.79
Yin, 2012, Kernel sparse representation based classification, Neurocomputing, 77, 120, 10.1016/j.neucom.2011.08.018
Yang, 2015, Joint representation and pattern learning for robust face recognition, Neurocomputing, 168, 70, 10.1016/j.neucom.2015.06.013
Qiao, 2010, Sparsity preserving projections with applications to face recognition, Pattern Recogn., 43, 331, 10.1016/j.patcog.2009.05.005
Bin, 2010, Learning with l(1)-graph for image analysis, IEEE Trans Image Process, 19, 858, 10.1109/TIP.2009.2038764
Shi, 2014, Face recognition by sparse discriminant analysis via joint L2,1-norm minimization, Pattern Recogn., 47, 2447, 10.1016/j.patcog.2014.01.007
Lai, 2014, Multilinear sparse principal component analysis, IEEE Trans Neural Networks Learn Syst, 25, 1942, 10.1109/TNNLS.2013.2297381
Lai, 2016, Approximate orthogonal sparse embedding for dimensionality reduction, IEEE Trans Neural Networks Learn Syst, 27, 723, 10.1109/TNNLS.2015.2422994
Zhang L, Yang M, Feng X. Sparse representation or collaborative representation: Which helps face recognition? In: Computer Vision (ICCV), 2011 IEEE International Conference on, (IEEE2011), p. 471–8.
Yang, 2013, Image classification using kernel collaborative representation with regularized least square, Appl Math Comput, 222, 13, 10.1016/j.amc.2013.07.024
Yang, 2015, A collaborative representation based projections method for feature extraction, Pattern Recogn., 48, 20, 10.1016/j.patcog.2014.07.009
Yin, 2016, Optimized projection for collaborative representation based classification and its applications to face recognition, Pattern Recogn. Lett., 73, 83, 10.1016/j.patrec.2016.01.012
Li, 2016, Maximum–minimum–median average MSD-based approach for face recognition, AEU - Int J Electron Commun, 70, 920, 10.1016/j.aeue.2016.04.007
Suykens, 1999, Least squares support vector machine classifiers, Neural Process. Lett., 9, 293, 10.1023/A:1018628609742
Liaw, 2002, Classification and regression by randomForest, R news, 2, 18