Dilated cardiomyopathy and neonatal lethality in mutant mice lacking manganese superoxide dismutase
Tóm tắt
Từ khóa
Tài liệu tham khảo
Kinouchi, H. et al. Attenuation of focal cerebral ischemic injury in transgenic mice overexpressing CuZn superoxide dismutase. Proc. natn. Acad. Sci. U.S.A. 88, 11158–11162 (1991).
Euler, D.E. Role of oxygen–derived free radicals in canine reperfusion arrhythmia. Am. J. Physiol. 268, H295–H300 (1995).
Samaja, M., Motterlini, R., Santoro, F., Dell' Antonio, G. & Corno, A. Oxidative injury in reoxygenated and reperfused hearts. Free Rad. Biol. Med. 16, 255–262 (1994).
Fahn, S. & Cohen, G. The oxidant stress hypothesis in Parkinson's disease: evidence supporting it. Ann. Neurol. 32, 804–812 (1992).
Lafon-Cazal, M., Pietri, S., Culcasi, M. & Bockaert, J. NMDA-dependent superoxide production and neurotoxicity. Nature 364, 535–537 (1993).
Davis, J.M., Rosenfeld, W.N., Sanders, R.J. & Gonenne, A. Prophylactic effects of recombinant human superoxide dismutase in neonatal lung injury. J. appl. Physiol. 74, 2234–2241 (1993).
Halliwell, B. The role of oxygen radicals in human disease, with particular reference to the vascular system. Homeostasis Suppl 1, 118–126 (1993).
Orr, W.C. & Sohal, R.S. Extension of life-span by overexpression of superoxide dismutase and catalase in Drosophila melanogaster. Science 263, 1128–1130 (1994).
Ku, H.H., Brunk, U.T. & Sohal, R.S. Relationship between mrtochondrial superoxide and hydrogen peroxide production and longevity of mammalian species. Free Rad. Biol. Med. 15, 621–627 (1993).
Harris, C.A. et al. Manganese superoxide dismutase is induced by IFN-γ in multiple cell types. Synergistic induction by IFN-γ and tumor necrosis factor or IL-1. J. Immunol. 147, 149–154 (1991).
Sato, M., Sasaki, M. & Hojo, H. Antioxidative roles of metallothionein and manganese superoxide dismutase induced by tumor necrosis factor-alpha and interleukin-6. Arch. Bioch. Biophy. 316, 738–744 (1995).
Akashi, M. et al. Irradiation increases manganese superoxide dismutase mRNA levels in human fibroblasts. Possible mechanisms for its accumulation. J. biol. Chem. 270, 15864–15869 (1995).
Church, S.L. et al. Increased manganese superoxide dismutase expression suppresses the malignant phenotype of human melanoma cells. Proc. natn. Acad. Sci. U.S.A. 90, 3113–3117 (1993).
St. Clair, D.K., Oberley, T.D., Muse, K.E. & St. Clair, W.H. Expression of manganese superoxide dismutase promotes cellular differentiation. Free Rad. Biol. Med. 16, 275–282 (1994).
Bourgeron, T. et al. Mutation of a nuclear succinate dehydrogenase gene results in mitochondrial respiratory chain deficiency. Nature Genet. 11, 144–149 (1995).
MüIIer–Höcker, J. et al. Fatal infantile mitochondrial cardiomyopathy and myopathy with heterogeneous tissue expression of combined respiratory chain deficiencies. Virchows Archiv. A Pathol. Anat. Histopathol. 419, 355–362 (1991).
Zheng, X. et al. Evidence in a lethal infantile mitochondrial disease for a nuclear mutation affecting respiratory complexes I and IV. Neurology 39, 1203–1209 (1989).
Reichmann, H. & Angelini, C. Single muscle fibre analyses in 2 brothers with succinate dehydrogenase deficiency. Eur. Neurol. 34, 95–98 (1994).
Linderholm, H., Essen-Gustavsson, B. & Thornell, L.E. Low succinate dehydrogenase (SDH) activity in a patient with a hereditary myopathy with paroxysmal myoglobinuria. J. int. Med. 228, 43–52 (1990).
Hall, R.E., Henriksson, K.G., Lewis, S.F., Haller, R.G. & Kennaway, N.G. Mitochondrial myopathy with succinate dehydrogenase and aconitase deficiency. Abnormalities of several iron–sulfur proteins. J. clin. Invest. 92, 2660–2666 (1993).
Zhang, Y., Marcillat, O., Giulivi, C., Ernster, L. & Davies, K.J. The oxidative inactivation of mitochondrial electron transport chain components and ATPase. J. biol. Chem. 265, 16330–16336 (1990).
Gardner, P.R., Nguyen, D.D. & White, C.W. Aconitase is a sensitive and critical target of oxygen poisoning in cultured mammalian cells and in rat lungs. Proc. natn. Acad. Sci. U.S.A. 91, 12248–12252 (1994).
Gardner, P.R., Raineri, I., Epstein, L.B. & White, C.W. Superoxide radical and iron modulate aconitase activity in mammalian cells. J. biol. Chem. 270, 13399–13405 (1995).
Chen, Y., Saari, J.T. & Kang, Y.J. Weak antioxidant defenses make the heart a target for damage in copper-deficient rats. Free Rad. Biol. Med. 17, 529–536 (1994).
Chen, S. & Evans, G.A. Use of polymerase chain reaction for screening transgenic mice. in PCR Protocols Current Methods and Applications, Methods in Molecular Biology Vol. 15 (ed White, B.A.) 75–80 (Humana Press, Totowa, New Jersey 1993).
de Rosa, G., Duncan, D.S., Keen, C.L. & Hurley, L.S. Evaluation of negative staining technique for determination of CN—insensitive superoxide dismutase activity. Bioch. biophy. Acta 566, 32–39 (1979).
Fridovich, I. Measuring the activity of superoxide dismutase: an embarrassment of riches. In Superoxide Dismutase 1 (ed. Oberley, C.W.) 69–77 (CRC Press, Boca Raton 1982).
Rifai, Z., Welle, S., Kamp, C. & Thornton, C.A. Ragged red fibers in normal aging and inflammatory myopathy. Ann. Neurol. 37, 24–29 (1995).