Digitally-intensive transceivers for future mobile communications—emerging trends and challenges

Ram Sunil Kanumalli1, T. Buckel1, Christoph Preissl1, Peter Preyler1, Andreas Gebhard2, Christian Motz2, J. Markovic1, Damir Hamidović3, Ehrentraud Hager4, Harald Pretl1, Andreas Springer3, Mario Huemer2
1Danube Mobile Communications Engineering, 4040, Linz, Austria
2Christian Doppler Laboratory for Digitally Assisted RF Transceivers for Future Mobile Communications, ISP, Johannes Kepler University Linz, Linz, Austria
3Christian Doppler Laboratory for Digitally Assisted RF Transceivers for Future Mobile Communications, NTHFS, Johannes Kepler University Linz, Linz, Austria
4Christian Doppler Laboratory for Digitally Assisted RF Transceivers for Future Mobile Communications, IIC, Johannes Kepler University Linz, Linz, Austria

Tóm tắt

Từ khóa


Tài liệu tham khảo

Staszewski, R. B. (2012): Digitally intensive wireless transceivers. IEEE Des. Test Comput., 29(6), 7–18.

Boos, Z., et al. (2011): A fully digital multimode polar transmitter employing 17b RF DAC in 3G mode. In IEEE international solid-state circuits conference (ISSCC) (pp. 376–378).

Staszewski, R. (2011): State-of-the-art and future directions of high-performance all-digital frequency synthesis in nanometer CMOS. IEEE Trans. Circuits Syst. I, Regul. Pap., 58(7), 1497–1510.

Buckel, T., et al. (2017): A highly reconfigurable RF-DPLL phase modulator for polar transmitters in multi-band/multi-standard cellular RFICs. In 2017 IEEE radio frequency integrated circuits symposium (RFIC), Honolulu, HI (pp. 104–107).

Sievert, S., et al. (2016): A 2 GHz 244 fs-resolution 1.2 ps-peak-INL edge interpolator-based digital-to-time converter in 28 nm CMOS. IEEE J. Solid-State Circuits, 51(12), 2992–3004.

Preyler, P., Preissl, C., Tertinek, S., Buckel, T., Springer, A. (2017): LO generation with a phase interpolator digital-to-time converter. IEEE Trans. Microw. Theory Tech.

Buckel, T., et al. (2014): Challenges in RF-DPLL design for wideband phase modulation supporting SC-FDMA in LTE uplink. In 44th European microwave conference (EuMC) (pp. 604–607).

Zimmermann, N., Thiel, B., Negra, R., Heinen, S. (2009): System architecture of an RF-DAC based multistandard transmitter. In 52nd IEEE international Midwest symposium on circuits and systems, 2009. MWSCAS ’09 (pp. 248–251).

Trampitsch, S., et al. (2017): A nonlinear switched state-space model for capacitive RF DACs. IEEE Trans. Circuits Syst. I, Regul. Pap., 64(6), 1342–1353.

Luschas, S., Schreier, R., Lee, H.-S. (2004): Radio frequency digital-to-analog converter. IEEE J. Solid-State Circuits, 39(9), 1462–1467.

Yoo, S.-M., Walling, J. S., Woo, E. C., Jann, B., Allstot, D. J. (2011): A switched-capacitor RF power amplifier. IEEE J. Solid-State Circuits, 46(12), 2977–2987.

Fulde, M., et al. (2017): A digital multimode polar transmitter supporting 40 MHz LTE Carrier Aggregation in 28 nm CMOS. In IEEE international solid-state circuits conference (ISSCC), San Francisco, CA (pp. 218–219).

Bagheri, R., et al. (2006): An 800 MHz to 5 GHz software-defined radio receiver in 90 nm CMOS. In 2006 IEEE international solid state circuits conference, San Francisco, CA (pp. 1932–1941).

Shibata, H., et al. (2012): A DC-to-1 GHz tunable RF Δ Σ $\Delta\varSigma$ ADC achieving DR = 74 dB $\mbox{DR}= 74~\mbox{dB}$ and BW = 150 MHz $\mbox{BW}=150~\mbox{MHz}$ at f 0 = 450 MHz $f_{0} = 450~\mbox{MHz}$ using 550 mW. IEEE J. Solid-State Circuits, 47(12), 2888–2897.

Pedersen, K. I., Frederiksen, F., Rosa, C., Nguyen, H., Garcia, L. G. U., Yuanye, W. (2011): Carrier aggregation for LTE-advanced: functionality and performance aspects. IEEE Commun. Mag., 49(6), 89–95.

Iwamura, M., Etemad, K., Fong, M., Nory, R., Love, R. (2010): Carrier aggregation framework in 3GPP LTE-advanced. IEEE Commun. Mag., 48(8), 60–67.

Gheidi, H., Dabag, H. T., Liu, Y., Asbeck, P. M., Gudem, P. (2015): Digital cancellation technique to mitigate receiver desensitization in cellular handsets operating in carrier aggregation mode with multiple uplinks and multiple downlinks. In Proc. of the IEEE radio and wireless symposium (RWS) (pp. 221–224).

Kiayani, A., Abdelaziz, M., Anttila, L., Lehtinen, V., Valkama, M. (2014): DSP-based suppression of spurious emissions at RX band in carrier aggregation FDD transceivers. In Proc. of the 22nd European signal processing conference (EUSIPCO) (pp. 591–595).

Dabag, H. T., Gheidi, H., Farsi, S., Gudem, P., Asbeck, P. M. (2013): All-digital cancellation technique to mitigate receiver desensitization in uplink carrier aggregation in cellular handsets. IEEE Trans. Microw. Theory Tech., 61(12), 4754–4765.

Dabag, H. T., Gheidi, H., Gudem, P., Asbeck, P. M. (2013): All-digital cancellation technique to mitigate self-jamming in uplink carrier aggregation in cellular handsets. In IEEE MTT-S international microwave symposium digest (IMS) (pp. 1–3).

Kiayani, A., Anttila, L., Valkama, M. (2014): Digital suppression of power amplifier spurious emissions at receiver band in FDD transceivers. IEEE Signal Process. Lett., 21(1), 69–73.

Kanumalli, R. S., Gebhard, A., Elmaghraby, A., Mayer, A., Schwartz, D., Huemer, M. (2016): Active digital cancellation of transmitter induced modulated spur interference in 4G LTE carrier aggregation transceivers. In IEEE 83rd vehicular technology conference (VTC spring), Nanjing (pp. 1–5).

Gebhard, A., Kanumalli, R. S., Neurauter, B., Huemer, M. (2016): Adaptive self-interference cancelation in LTE-A carrier aggregation FDD direct-conversion transceivers. In 2016 IEEE sensor array and multichannel signal processing workshop (SAM), Rio de Janerio (pp. 1–5).

Frotzscher, A., Fettweis, G. (2008): Baseband analysis of Tx leakage in WCDMA zero-IF-receivers. In 3rd international symposium on communications, control and signal processing (pp. 129–134).

Lederer, C., Huemer, M. (2011): Simplified complex LMS algorithm for the cancellation of second-order TX intermodulation distortions in homodyne receivers. In Proc. of the 45th Asilomar conference on signals, systems and computers (ASILOMAR) (pp. 533–537).