Digital twins: artificial intelligence and the IoT cyber-physical systems in Industry 4.0
Tóm tắt
This paper presents a summary of mechanisms for the evolution of artificial intelligence in ‘internet of things’ networks. Firstly, the paper investigates how the use of new technologies in industrial systems improves organisational resilience supporting both a technical and human level. Secondly, the paper reports empirical results that correlate academic literature with Industry 4.0 interdependencies between edge components to both external and internal services and systems. The novelty of the paper is a new approach for creating a virtual representation operating as a real-time digital counterpart of a physical object or process (i.e., digital twin) outlined in a conceptual diagram. The methodology applied in this paper resembled a grounded theory analysis of complex interconnected and coupled systems. By connecting the human–computer interactions in different information knowledge management systems, this paper presents a summary of mechanisms for the evolution of artificial intelligence in internet of things networks.
Từ khóa
Tài liệu tham khảo
Aria, M., Cuccurullo, C.: bibliometrix: an R-tool for comprehensive science mapping analysis. J. Informet. 11(4), 959–975 (2017). https://doi.org/10.1016/j.joi.2017.08.007
ASI, A. for strategic initiatives: National Technology initiative, Agency for Strategic Initiatives. Government of Russia (2016). https://asi.ru/eng/nti/
Balaji, B., Al Faruque, M. A., Dutt, N., Gupta, R., & Agarwal, Y.: Models, abstractions, and architectures. In: Proceedings of the 52nd Annual Design Automation Conference on—DAC ’15, 1–6. https://doi.org/10.1145/2744769.2747936 (2015)
Benveniste, A.: Loosely Time-Triggered Architectures for Cyber-Physical Systems. 2010 Design, Automation & Test in Europe Conference & Exhibition, Dresden, 3–8 (2010). https://doi.org/10.1109/DATE.2010.5457246
Bhave, A., Krogh, B. H., Garlan, D., & Schmerl, B.: View consistency in architectures for cyber-physical systems. In: 2011 IEEE/ACM Second International Conference on Cyber-Physical Systems, 151–160 (2011). https://doi.org/10.1109/ICCPS.2011.17
Bouws, T., Kramer, F., Heemskerk, P., Van Os, M., Van Der Horst, T., Helmer, S., Huveneers, S., Butter, M., Van Der Zee, F., Van Oort, S., Ypma, J., Mulder, G., Kotterink, B., De Heide, M.: Smart Industry: Dutch Industry Fit for the Future. (2015). https://doi.org/527727
Brettel, M., Fischer, F.G., Bendig, D., Weber, A.R., Wolff, B.: Enablers for Self-optimizing Production Systems in the Context of Industrie 4.0. Procedia CIRP 41, 93–98 (2016). https://doi.org/10.1016/j.procir.2015.12.065
Department for Digital Culture Media Sport: UK Digital Strategy 2017—GOV.UK; Department for Culture, Media and Sport (2017). https://www.gov.uk/government/publications/uk-digital-strategy/uk-digital-strategy
Easterby-Smith, M., Thorpe, R., Lowe, A.: Management Research: An Introduction. SAGE, Thousand Oaks (2002)
Eisenhardt, K.M.: Building theories from case study research. Acad. Manag. Rev. 14(4), 532 (1989). https://doi.org/10.2307/258557
Faller, C., Feldmüller, D.: Industry 4.0 learning factory for regional SMEs. Procedia CIRP 32, 88–91 (2015). https://doi.org/10.1016/j.procir.2015.02.117
G20: G20 New Industrial Revolution Action Plan. (2016). http://g20chn.org/English/Documents/Current/201609/P020160908738867573193.pdf
Germany Trade Invest. Industrie 4.0 Smart Manufacturing for the Future. (2014). https://www.gtai.de/GTAI/Content/EN/Invest/_SharedDocs/Downloads/GTAI/Brochures/Industries/industrie4.0-smart-manufacturing-for-the-future-en.pdf
Goulding, C.: Grounded Theory: A Practical Guide for Management, Business and Market Researchers. SAGE, Thousand Oaks (2002)
Gubbi, J., Buyya, R., Marusic, S., Palaniswami, M.: Internet of Things (IoT): a vision, architectural elements, and future directions. Futur. Gener. Comput. Syst. 29(7), 1645–1660 (2013). https://doi.org/10.1016/j.future.2013.01.010
Gummesson, E.: Qualitative Methods in Management Research. Sage, Thousand Oaks (2000)
Hahn, A., Ashok, A., Sridhar, S., Govindarasu, M.: Cyber-physical security testbeds: architecture, application, and evaluation for smart grid. IEEE Trans. Smart Grid 4(2), 847–855 (2013). https://doi.org/10.1109/TSG.2012.2226919
Industrial Internet Consortium: The Industrial Internet of Things Volume G5: Connectivity Framework; Industrial Internet Consortium. (2017). http://www.iiconsortium.org/pdf/IIC_PUB_G5_V1.0_PB_20170228.pdf
Industrie 4.0.: Plattform Industrie 4.0—Testbeds. (2017). http://www.plattform-i40.de/I40/Navigation/EN/InPractice/Testbeds/testbeds.html
Industrial Value Chain Initiative Japan: Industrial Value Chain Reference Architecture; Industrial Value Chain Initiative. (2017). https://iv-i.org/en/docs/Industrial_Value_Chain_Reference_Architecture_170424.pdf
Jensen, J. C., Chang, D. H., Lee, E. A.: A model-based design methodology for cyber-physical systems. In: 2011 7th International Wireless Communications and Mobile Computing Conference, pp. 1666–1671 (2011). https://doi.org/10.1109/IWCMC.2011.5982785
John, P.: High Value Manufacturing Catapult. (2017). https://ec.europa.eu/growth/tools-databases/regional-innovation-monitor/sites/default/files/report/HighValueManufacturingCatapult_1.pdf
Lee, J., Bagheri, B., Kao, H.-A.: A cyber-physical systems architecture for industry 4.0-based manufacturing systems. Manuf. Lett. 3, 18–23 (2015). https://doi.org/10.1016/j.mfglet.2014.12.001
Leitão, P., Colombo, A.W., Karnouskos, S.: Industrial automation based on cyber-physical systems technologies: prototype implementations and challenges. Comput. Ind. 81, 11–25 (2016). https://doi.org/10.1016/j.compind.2015.08.004
Lezzi, M., Lazoi, M., Corallo, A.: Cybersecurity for Industry 4.0 in the current literature: a reference framework. In: Computers in Industry, vol. 103, pp. 97–110. Elsevier, Amsterdam (2018). https://doi.org/10.1016/j.compind.2018.09.004
Madakam, S., Ramaswamy, R., Tripathi, S.: Internet of things (IoT): a literature review. J. Comput. Commun. 3(3), 164–173 (2015). https://doi.org/10.4236/jcc.2015.35021
Marwedel, P., Engel, M.: Cyber-Physical Systems: Opportunities, Challenges and (Some) Solutions, pp. 1–30. Springer International Publishing, New York (2016). https://doi.org/10.1007/978-3-319-26869-9_1
Miles, M.B., Huberman, A.M., Saldaña, J.: Qualitative Data Analysis: A Methods Sourcebook. SAGE, Thousand Oak (1983)
Ministry of Economy Industry and Competitiveness Accessibility: Industria Conectada 4.0: La transformación digital de la industria española Dossier de prensa; Ministry of Economy Industry and Competitiveness Accessibility. (2015). http://www.lamoncloa.gob.es/serviciosdeprensa/notasprensa/Documents/081015DossierprensaIndustria4.0.pdf
Ministry of Economy Trade and Industry of Japan: NRS, New Robot Strategy—Vision Strategy and Action Plan; Ministry of Economy Trade and Industry of Japan. (2015). http://www.meti.go.jp/english/press/2015/pdf/0123_01b.pdf
Ministry of Economy, T. and I. of J.: RRI, Robot Revolution Initiative—Summary of Japan’s Robot Strategy—It’s vision, strategy and action plan; Ministry of Economy, Trade and Industry of Japan. (2015). http://www.meti.go.jp/english/press/2015/pdf/0123_01c.pdf
Ministry of Education Universities and Research: Italian Technology Cluster: Intelligent Factories; Ministry of Education Universities and Research. Cluster Tecnologico Nazionale Fabbrica Intelligente | Imprese, Università, Organismi Di Ricerca, Associazioni e Enti Territoriali: Insieme per La Crescita Del Manifatturiero. (2014). http://www.fabbricaintelligente.it/en/
New Industrial France: New Industrial France: Building France’s industrial future—updated text from the 2013 version. (2016). https://www.economie.gouv.fr/files/files/PDF/web-dp-indus-ang.pdf
NIST Advanced Manufacturing Office: Advanced Manufacturing Partnership. (2013). https://www.nist.gov/amo/programs
Pan, M., Sikorski, J., Kastner, C.A., Akroyd, J., Mosbach, S., Lau, R., Kraft, M.: Applying Industry 4.0 to the Jurong Island Eco-industrial Park. Energy Procedia 75, 1536–1541 (2015). https://doi.org/10.1016/j.egypro.2015.07.313
Radanliev, P.: Supply Chain systems architecture and engineering design: green-field supply chain integration. Int. J. Operat. Supply Chain Manag. (2016). https://doi.org/10.20944/preprints201904.0122.v1
Radanliev, P., De Roure, D., Nurse, J.R.C., Mantilla Montalvo, R., Cannady, S., Santos, O., Maddox, L., Burnap, P., Maple, C.: Future developments in standardisation of cyber risk in the Internet of Things (IoT). SN Appl. Sci. 2(2), 1–16 (2020a). https://doi.org/10.1007/s42452-019-1931-0
Radanliev, P., De Roure, D., Van Kleek, M., Santos, O., Ani, U.: Artificial intelligence in cyber physical systems. AI & Soc. 1, 1–14 (2020b). https://doi.org/10.1007/s00146-020-01049-0
Radanliev, P., De Roure, D., Walton, R., Van Kleek, M., Montalvo, R.M.R.M., Maddox, L.L.T., Santos, O., Burnap, P., Anthi, E.: Artificial intelligence and machine learning in dynamic cyber risk analytics at the edge. SN Appl. Sci. 2(11), 1–8 (2020c). https://doi.org/10.1007/s42452-020-03559-4
Radanliev, P., Roure, D.D., Page, K., Nurse, J.R.C., Montalvo, R.M., Santos, O., Maddox, L., Burnap, P.: Cyber risk at the edge: current and future trends on cyber risk analytics and artificial intelligence in the industrial internet of things and industry 4.0 supply chains. Cybersecur. Springer Nat. 3(13), 1–21 (2020d). https://doi.org/10.1186/s42400-020-00052-8
Rajkumar, R., Lee, I., Sha, L., Stankovic, J.: Cyber-physical systems: the next computing revolution. In: Proceedings of the 47th Design Automation Conference on—DAC’10, 731. (2010). https://doi.org/10.1145/1837274.1837461
Rivas, A., Martín, L., Sittón, I., Chamoso, P., Martín-Limorti, J.J., Prieto, J., González-Briones, A.: Semantic analysis system for industry 4.0. Commun. Comput. Inf. Sci. 877, 537–548 (2018). https://doi.org/10.1007/978-3-319-95204-8_45
Sangiovanni-Vincentelli, A., Damm, W., Passerone, R.: Taming Dr. Frankenstein: contract-based design for cyber-physical systems * g. Eur. J. Control. 18, 217–238 (2012). https://doi.org/10.3166/EJC.18.217-238
Shafiq, S.I., Sanin, C., Szczerbicki, E., Toro, C.: Virtual engineering object / virtual engineering process: a specialized form of cyber physical system for Industrie 4.0. Procedia Comput. Sci. 60, 1146–1155 (2015). https://doi.org/10.1016/j.procs.2015.08.166
Shi, J., Wan, J., Yan, H., & Suo, H.: A survey of Cyber-Physical Systems. In: 2011 International Conference on Wireless Communications and Signal Processing (WCSP), pp. 1–6 (2011). https://doi.org/10.1109/WCSP.2011.6096958
Sirris and Agoria. Made Different: Factory of the Future 4.0. (2017). http://www.madedifferent.be/en/what-factory-future-40
Sittón-Candanedo, I.: A new approach: edge computing and blockchain for industry 4.0. Adv. Intell. Syst. Comput. 1004, 201–204 (2020). https://doi.org/10.1007/978-3-030-23946-6_25
Stock, T., Seliger, G.: Opportunities of sustainable manufacturing in industry 4.0. Procedia CIRP 40, 536–541 (2016). https://doi.org/10.1016/j.procir.2016.01.129
Stojmenovic, I.: Machine-to-machine communications with in-network data aggregation, processing, and actuation for large-scale cyber-physical systems. IEEE Internet Things J. 1(2), 122–128 (2014). https://doi.org/10.1109/JIOT.2014.2311693
The State Council People Republic of China: Made in China 2025; The State Council People Republic of China. (2017). http://english.gov.cn/2016special/madeinchina2025/
Wahlster, W., Helbig, J., Hellinger, A., Stumpf, M. A. V., Blasco, J., Galloway, H., & Gestaltung, H: Recommendations for Implementing the Strategic Initiative INDUSTRIE 4.0. (2013). http://www.acatech.de/fileadmin/user_upload/Baumstruktur_nach_Website/Acatech/root/de/Material_fuer_Sonderseiten/Industrie_4.0/Final_report__Industrie_4.0_accessible.pdf
Wan, J., Cai, H., Zhou, K.: Industrie 4.0: Enabling technologies. In: Proceedings of 2015 International Conference on Intelligent Computing and Internet of Things, pp. 135–140 (2015). https://doi.org/10.1109/ICAIOT.2015.7111555