Digital hemispherical photographs and Sentinel-2 multi-spectral imagery for mapping leaf area index at regional scale over a tropical deciduous forest
Tropical Ecology - Trang 1-13 - 2024
Tóm tắt
The leaf area index (LAI) provides valuable input for modeling climate and ecosystem processes. However, ground-based observations are necessitated across various phenophases from dense tropical forests for a better understanding in terms of their contribution to carbon fixation. In this study, Digital Hemispherical Photography (DHP) was used for LAI observation from Similipal Biosphere Reserve, and to predict high-resolution LAI using Random Forest Machine Learning approach. Observations were taken from ninety-three Elementary sampling units (ESUs) corresponding to the beginning and end of leaf fall seasons across moist deciduous, dry deciduous, and semi-evergreen forests. LAI demonstrated high values for dry deciduous, followed by semi-evergreen and moist deciduous forests for the start of the leaf fall season, whereas moist deciduous forests demonstrated high values during the end of the leaf fall season. Satellite-based spectral reflectance bands of Sentinel-2 and vegetation indices (VIs) were used as predictor variables, wherein the band-7, band-8, band-12, enhanced vegetation index (EVI), and Red-edge based EVI were evaluated as the most dominant responsive variables for LAI estimation. Random Forest (RF) model provided good accuracy (R2 = 0.64, RMSE = 0.62) with observed DHP-based LAI. However, a comparison of RF model-based predicted LAI with global LAI products (MOD15A2H and VNP15A2H) provided a moderate correlation. Such studies demonstrate the potential of site or region-specific case studies to evaluate coarser-resolution global LAI products for possible improvement.
Tài liệu tham khảo
Asner GP, Scurlock JM, Hicke AJ (2003) Global synthesis of leaf area index observations: implications for ecological and remote sensing studies. Glob Ecol Biogeogr 12(3):191–205
Bandopadhyay S, Das B, Sánchez AC, Banerjee SP, Banerjee BP, Ghosh S (2023) Canopy scale high-resolution forest biophysical parameter (LAI, fAPAR, and fCover) Retrieval Through Machine Learning and Cloud Computation Approach. In: 2023 International Conference on Machine Intelligence for GeoAnalytics and Remote Sensing (MIGARS). IEEE, pp 1–4
Baret F, Camacho F, Fang H, Garrigues S, Gobron N, Lang M, Lacaze R, LeBlanc S, Meroni M, Martinez B et al (2014) Global leaf area index product validation good practices. Academia, Cambridge
Baret F, Weiss M, Allard D, Garrigue S, Leroy M, Jeanjean H, Fernandes R, Myneni R, Privette J, Morisette J, others (2021) VALERI: a network of sites and a methodology for the validation of medium spatial resolution land satellite products. https://hal.science/hal-03221068/
Belgiu M, Drăgu L (2016) Random forest in remote sensing: a review of applications and future directions. ISPRS J Photogramm Remote Sens 114:24–31. https://doi.org/10.1016/j.isprsjprs.2016.01.011
Blinn CE, House MN, Wynne RH, Thomas VA, Fox TR, Sumnall M (2019) Landsat 8 based leaf area index estimation in loblolly pine plantations. Forests 10(3):222
Breiman L (2001) Random forests. Mach Learn 45(1):5–32
Brown LA, Meier C, Morris H, Pastor-Guzman J, Bai G, Lerebourg C, Gobron N, Lanconelli C, Clerici M, Dash J (2020a) Evaluation of global leaf area index and fraction of absorbed photosynthetically active radiation products over North America using copernicus ground based observations for validation data. Remote Sens Environ 247:111935
Brown LA, Ogutu BO, Camacho F, Fuster B, Dash J (2020b) Deriving leaf area index reference maps using temporally continuous in situ data: a comparison of upscaling approaches. IEEE J Select Top Appl Earth Obs Remote Sens 14:624–630
Chen JM, Cihlar J (1995) Plant canopy gap-size analysis theory for improving optical measurements of leaf-area index. Appl Opt 34(27):6211–6222
Chen J, Liu J, Cihlar J, Goulden M (1999) Daily canopy photosynthesis model through temporal and spatial scaling for remote sensing applications. Ecol Model 124(2–3):99–119
Chen Y, Ma L, Yu D, Feng K, Wang X, Song J (2021) Improving leaf area index retrieval using multi-sensor images and stacking learning in subtropical forests of China. Remote Sens 14(1):148
Chianucci F, Cutini A (2012) Digital hemispherical photography for estimating forest canopy properties: current controversies and opportunities. iforest-Biogeosci For 5(6):290
Chrysafis I, Korakis G, Kyriazopoulos AP, Mallinis G (2020) Retrieval of leaf area index using Sentinel-2 imagery in a mixed mediterranean forest area. IJGI 9(11):622. https://doi.org/10.3390/ijgi9110622
Daughtry C, Walthall C (1998) Spectral discrimination of Cannabis sativa L. leaves and canopies. Remote Sens Environ 64(2):192–201
De Kauwe MG, Disney M, Quaife T, Lewis P, Williams M (2011) An assessment of the MODIS collection 5 leaf area index product for a region of mixed coniferous forest. Remote Sens Environ 115(2):767–780
Deblonde G, Penner M, Royer A (1994) Measuring leaf area index with the LI-COR LAI-2000 in pine stands. Ecology 75(5):1507–1511
Fang H, Zhang Y, Wei S, Li W, Ye Y, Sun T, Liu W (2019) Validation of global moderate resolution leaf area index (LAI) products over croplands in northeastern China. Remote Sens Environ 233:111377
Frazer GW, Canham CD, Lertzman KP (1999) Gap Light Analyzer (GLA), Version 2.0: Imaging software to extract canopy structure and gap light transmission indices from true-colour fisheye photographs, users manual and program documentation. Simon Fraser University, Burnaby, British Columbia, and the Institute of Ecosystem Studies, Millbrook, New York 36
Gong P, Pu R, Biging GS, Larrieu MR (2003) Estimation of forest leaf area index using vegetation indices derived from Hyperion hyperspectral data. IEEE Trans Geosci Remote Sens 41(6):1355–1362
Guo X, Wang M, Jia M, Wang W (2021) Estimating mangrove leaf area index based on red-edge vegetation indices: a comparison among UAV, WorldView-2 and Sentinel-2 imagery. Int J Appl Earth Obs Geoinf 103:102493
Harvey L (2000) Upscaling in global change research. Clim Change 44(3):225–263
Jacquemoud S, Baret F (1990) PROSPECT: a model of leaf optical properties spectra. Remote Sens Environ 34(2):75–91. https://doi.org/10.1016/0034-4257(90)90100-Z
Jonckheere I, Fleck S, Nackaerts K, Muys B, Coppin P, Weiss M, Baret F (2004) Review of methods for in situ leaf area index determination: Part I. Theories, sensors and hemispherical photography. Agric For Meteorol 121(1–2):19–35
Kamenova I, Dimitrov P (2021) Evaluation of Sentinel-2 vegetation indices for prediction of LAI, fAPAR and fCover of winter wheat in Bulgaria. Eur J Remote Sens 54(sup1):89–108
Korhonen L, Packalen P, Rautiainen M et al (2017) Comparison of Sentinel-2 and Landsat 8 in the estimation of boreal forest canopy cover and leaf area index. Remote Sens Environ 195:259–274
Leblanc SG, Chen JM (2001) A practical scheme for correcting multiple scattering effects on optical LAI measurements. Agric For Meteorol 110(2):125–139
Leblanc SG, Chen JM, Fernandes R, Deering DW, Conley A (2005) Methodology comparison for canopy structure parameters extraction from digital hemispherical photography in boreal forests. Agric For Meteorol 129(3–4):187–207
Liang S, Yi Q, Liu J et al (2015) Vegetation dynamics and responses to recent climate change in Xinjiang using leaf area index as an indicator. Ecol Ind 58:64–76
Louis J, Debaecker V, Pflug B, Main-Knorn M, Bieniarz J, Mueller-Wilm U, Cadau E, Gascon F (2016) Sentinel-2 Sen2Cor: L2A processor for users. In: Proceedings living planet symposium 2016. Spacebooks Online, pp 1–8
Macfarlane C, Ryu Y, Ogden GN, Sonnentag O (2014) Digital canopy photography: exposed and in the raw. Agric For Meteorol 197:244–253
Mahato PS, Bandhopadhyay K, Bhunia GS (2021) Assessment of forest health using remote sensing—a case study of Simlipal National Park, Odisha (India). Spatial modeling in forest resources management. Springer, pp 213–235
Mudi S, Paramanik S, Behera MD, Prakash AJ, Deep NR, Kale MP, Kumar S, Sharma N, Pradhan P, Chavan M et al (2022) Moderate resolution LAI prediction using Sentinel-2 satellite data and indirect field measurements in Sikkim Himalaya. Environ Monit Assess 194(12):897
Origo N, Calders K, Nightingale J, Disney M (2017) Influence of levelling technique on the retrieval of canopy structural parameters from digital hemispherical photography. Agric For Meteorol 237:143–149
Paramanik S, Behera M, Dash J (2022) Symbolic regression-based allometric model development of a mangrove forest LAI using structural variables and digital hemispherical photography. Appl Geogr 139:102649
Paramanik S, Behera MD, Bhattacharya B, Tripathi S (2019) Evaluation and Validation of The MODIS LAI Algorithm with Digital Hemispherical Photography at Bhitar Kanika Mangrove Forest, India. In: IGARSS 2019–2019 IEEE International Geoscience and Remote Sensing Symposium. IEEE, pp 6558–6561
Peng J, Jiang H, Liu Q, Green SM, Quine TA, Liu H, Qiu S, Liu Y, Meersmans J (2021) Human activity vs climate change: Distinguishing dominant drivers on LAI dynamics in karst region of southwest China. Sci Total Environ 769:144297
Porwal S, Katiyar SK (2014) Performance evaluation of various resampling techniques on IRS imagery. In: 2014 Seventh International Conference on Contemporary Computing (IC3). IEEE, pp 489–494
Pu R, Gong P, Biging GS, Larrieu MR (2003) Extraction of red edge optical parameters from Hyperion data for estimation of forest leaf area index. IEEE Trans Geosci Remote Sens 41(4):916–921
Reddy CS, Pattanaik C, Mohapatra A, Biswal A (2007) Phytosociological observations on tree diversity of tropical forest of Similipal Biosphere Reserve, Orissa India. Taiwania 52(4):352–359
Richardson AD, Dail DB, Hollinger D (2011) Leaf area index uncertainty estimates for model–data fusion applications. Agric For Meteorol 151(9):1287–1292
Rubilar RA, Lee Allen H, Fox TR, Cook RL, Albaugh TJ, Campoe OC (2018) Advances in silviculture of intensively managed plantations. Curr For Reports 4(1):23–34
Running SW, Nemani RR, Peterson DL, Band LE, Potts DF, Pierce LL, Spanner MA (1989) Mapping regional forest evapotranspiration and photosynthesis by coupling satellite data with ecosystem simulation. Ecology 70(4):1090–1101
Srinet R, Nandy S, Patel N (2019) Estimating leaf area index and light extinction coefficient using Random Forest regression algorithm in a tropical moist deciduous forest, India. Eco Inform 52:94–102
Tang H, Brolly M, Zhao F, Strahler AH, Schaaf CL, Ganguly S, Zhang G, Dubayah R (2014) Deriving and validating leaf area index (LAI) at multiple spatial scales through lidar remote sensing: a case study in Sierra National Forest, CA. Remote Sens Environ 143:131–141
Towers PC, Strever A, Poblete-Echeverría C (2019) Comparison of vegetation indices for leaf area index estimation in vertical shoot positioned vine canopies with and without grenbiule hail-protection netting. Remote Sens 11(9):1073
Tripathi P, Patel N, Kushwaha S, Dadhwal V (2014) Upscaling of leaf area index in Terai forest plantations using fine-and moderate-resolution satellite data. Int J Remote Sens 35(22):7749–7762
Viña A, Gitelson AA, Nguy-Robertson AL, Peng Y (2011) Comparison of different vegetation indices for the remote assessment of green leaf area index of crops. Remote Sens Environ 115(12):3468–3478
Wang T, Zhang H, Lin H, Fang C (2016) Textural-spectral feature-based species classification of mangroves in Mai Po nature reserve from worldview-3 imagery. Remote Sens 8(1):1–15. https://doi.org/10.3390/rs8010024
Wessman CA (1992) Spatial scales and global change: bridging the gap from plots to GCM grid cells. Annu Rev Ecol Syst 23:175–200
Xie Q, Dash J, Huang W, Peng D, Qin Q, Mortimer H, Casa R, Pignatti S, Laneve G, Pascucci S et al (2018) Vegetation indices combining the red and red-edge spectral information for leaf area index retrieval. IEEE J Select Top Appl Earth Obs Remote Sens 11(5):1482–1493
Yan K, Park T, Yan G, Chen C, Yang B, Liu Z, Nemani RR, Knyazikhin Y, Myneni RB (2016) Evaluation of MODIS LAI/FPAR product collection 6. Part 1: Consistency and improvements. Remote Sens 8(5):359
Yan K, Park T, Chen C, Xu B, Song W, Yang B, Zeng Y, Liu Z, Yan G, Knyazikhin Y et al (2018) Generating global products of LAI and FPAR from SNPP-VIIRS data: theoretical background and implementation. IEEE Trans Geosci Remote Sens 56(4):2119–2137
Zhang Y, Chen JM, Miller JR (2005) Determining digital hemispherical photograph exposure for leaf area index estimation. Agric For Meteorol 133(1–4):166–181
Zhang H, Li J, Liu Q, Dong Y, Li S, Zhang Z, Zhu X, Liu L, Zhao J (2021) Estimating Leaf Area Index with Dynamic Leaf Optical Properties. Remote Sensing 13(23):4898
Zhao Q, Yu S, Zhao F, Tian L, Zhao Z (2019) Comparison of machine learning algorithms for forest parameter estimations and application for forest quality assessments. For Ecol Manag 434:224–234