Diffusivities and atomic mobilities in bcc Ti–Mo–Ta alloys
Tài liệu tham khảo
Zhang, 2021, Pseudo-spinodal mechanism approach to designing a near-β high-strength titanium alloy through high-throughput technique, Rare Met., 40, 2099, 10.1007/s12598-020-01560-9
Geetha, 2009, Ti based biomaterials, the ultimate choice for orthopaedic implants – a review, Prog. Mater. Sci., 54, 397, 10.1016/j.pmatsci.2008.06.004
Niinomi, 2015, Titanium alloys for biomedical applications, 179
Gogia, 2005, High-temperature titanium alloys, Defence Sci. J., 55, 149, 10.14429/dsj.55.1979
Wu, 2017, Investigation of the influence of Fe on the microstructure and properties of Ti5553 near-β titanium alloy with combinatorial approach, Int. J. Mater. Res., 108, 355, 10.3139/146.111487
Eisenbarth, 2004, Biocompatibility of β-stabilizing elements of titanium alloys, Biomaterials, 25, 5705, 10.1016/j.biomaterials.2004.01.021
Biesiekierski, 2012, A new look at biomedical Ti-based shape memory alloys, Acta Biomater., 8, 1661, 10.1016/j.actbio.2012.01.018
Song, 1999, Theoretical study of the effects of alloying elements on the strength and modulus of β-type bio-titanium alloys, Mater. Sci. Eng., A., 260, 269, 10.1016/S0921-5093(98)00886-7
Gordin, 2005, Synthesis, structure and electrochemical behavior of a beta Ti-12Mo-5Ta alloy as new biomaterial, Mater. Lett., 59, 2936, 10.1016/j.matlet.2004.09.063
Ling, 2021, A CALPHAD-type Young’s modulus database of Ti-rich Ti–Nb–Zr–Mo system, Calphad, 73, 10.1016/j.calphad.2021.102255
Marker, 2018, Thermodynamic description of the Ti-Mo-Nb-Ta-Zr system and its implications for phase stability of Ti bio-implant materials, Calphad, 61, 72, 10.1016/j.calphad.2018.02.004
Elias, 2006, Microstructural and mechanical characterization of biomedical Ti–Nb–Zr(–Ta) alloys, Mater. Sci. Eng., A, 432, 108, 10.1016/j.msea.2006.06.013
Li, 2021, Towards high-throughput microstructure simulation in compositionally complex alloys via machine learning, Calphad, 72, 10.1016/j.calphad.2020.102231
Helander, 1999, Diffusion in the B2-b.c.c. phase of the Al–Fe–Ni system—application of a phenomenological model, Acta Mater., 47, 3291, 10.1016/S1359-6454(99)00174-3
Zhang, 2017, CALPHAD-type modeling of diffusion kinetics in multicomponent alloys, Handb. Solid State Diffus., 1, 321
Chen, 2004, Quantitative phase field modeling of diffusion-controlled precipitate growth and dissolution in Ti–Al–V, Scripta Mater., 50, 471, 10.1016/j.scriptamat.2003.10.032
Chen, 2016, Exploring the phase transformation in β-Quenched Ti-55531 alloy during continuous heating via dilatometric measurement, microstructure characterization, and diffusion analysis, Metall. Mater. Trans., 1
Zhang, 2015, Incorporating the CALPHAD sublattice approach of ordering into the phase-field model with finite interface dissipation, Acta Mater., 88, 156, 10.1016/j.actamat.2014.11.037
Fleck, 2021, Phase-field modeling of precipitation microstructure evolution in multicomponent alloys during industrial heat treatments, 70
Chen, 2021, Examination of dendritic growth and microsegregation during solidification of Al–Li binary alloy using the phase-field simulation coupling CALPHAD data, Calphad, 74, 10.1016/j.calphad.2021.102271
Lukas, 2007
1970
Borgenstam, 2000, DICTRA, a tool for simulation of diffusional transformations in alloys, J. Phase Equil., 21, 269, 10.1361/105497100770340057
Andersson, 2002, Thermo-Calc & DICTRA, computational tools for materials science, Calphad, 26, 273, 10.1016/S0364-5916(02)00037-8
Chen, 2018, Investigations on diffusion behaviors in Ti–rich Ti–Nb–Zr–Cr system: experimental measurement and CALPHAD modeling, Calphad, 62, 223, 10.1016/j.calphad.2018.07.005
Neumann, 2009
Thibon, 1998, Interdiffusion in the β Mo-Ti solid solution at high temperatures, Z. Metallkd., 89, 187
Zhu, 2016, Measurement of interdiffusion and impurity diffusion coefficients in the bcc phase of the Ti–X (X = Cr, Hf, Mo, Nb, V, Zr) binary systems using diffusion multiples, J. Mater. Sci., 1
Sprengel, 1997, Interdiffusion in binary β-titanium alloys, Defect Diffusion Forum, 143–147, 431, 10.4028/www.scientific.net/DDF.143-147.431
Fedotov, 1969, Mutual diffusion in systems Ti-V, Ti-Nb, Ti-Ta, Ti-Mo, Fiz. Met. Metalloved., 27, 873
Ansel, 1998, Interdiffusion in the body cubic centered β-phase of Ta–Ti alloys, Acta Mater., 46, 423, 10.1016/S1359-6454(97)00272-3
Chen, 2018, Experimental determination of impurity and interdiffusion coefficients in seven Ti and Zr binary systems using diffusion multiples, Metall. Mater. Trans., 49, 3108, 10.1007/s11661-018-4645-9
Guillemot, 2001, On the diffusion in the Mo–Ta refractory system, Int. J. Refract. Metals Hard Mater., 19, 183, 10.1016/S0263-4368(01)00040-3
Liu, 2009, Computational study of mobilities and diffusivities in bcc Ti-Zr and bcc Ti-Mo alloys, J. Phase Equilibria Diffus., 30, 334, 10.1007/s11669-009-9557-3
Liu, 2010, Study of atomic mobilities and diffusion characteristics in bcc Ti–Ta and Ta–W alloys, Calphad, 34, 310, 10.1016/j.calphad.2010.06.004
Liu, 2012, Diffusion characteristics and atomic mobilities for bcc refractory Mo–Ta, Mo–W, and Mo–Nb alloys, Calphad, 36, 110, 10.1016/j.calphad.2011.12.004
Chen, 2018, Recommendation for reliable evaluation of diffusion coefficients from diffusion profiles with steep concentration gradients, Materialia, 2, 63, 10.1016/j.mtla.2018.06.011
Shim, 1996, A thermodynamic evaluation of the Ti-Mo-C system, Metall. Mater. Trans. B, 27, 955, 10.1007/s11663-996-0009-8
Saunders, 1994
Xiong, 2004, Thermodynamic assessment of the Mo–Nb–Ta system, Calphad, 28, 133, 10.1016/j.calphad.2004.07.002
Larsson, 2021, On the use of Boltzmann’s transformation to solve diffusion problems, Calphad, 73, 10.1016/j.calphad.2021.102261
Kirkaldy, 1957, Diffusion in multicomponent metallic systems, Can. J. Phys., 35, 435, 10.1139/p57-047
Whittle, 1974, The measurement of diffusion coefficients in ternary systems, Scripta Metall., 8, 883, 10.1016/0036-9748(74)90311-1
Zhang, 2013, Extracting interdiffusion coefficients from binary diffusion couples using traditional methods and a forward-simulation method, Intermetallics, 34, 132, 10.1016/j.intermet.2012.11.012
Cui, 2008, Computational study of atomic mobility in Co-Fe-Ni ternary fcc alloys, J. Phase Equilibria Diffus., 29, 312, 10.1007/s11669-008-9341-9
Wang, 2017, Mapping of diffusion and nanohardness properties of fcc Co-Al-V alloys using ternary diffusion couples, Metall. Mater. Trans., 48, 4286, 10.1007/s11661-017-4170-2
Bai, 2019, Diffusivities and atomic mobilities in bcc Ti-Zr-Nb alloys, Calphad, 64, 160, 10.1016/j.calphad.2018.12.003
Chen, 2014, Diffusion research in BCC Ti-Al-Mo ternary alloys, Metall. Mater. Trans., 45, 1647, 10.1007/s11661-014-2245-x
Hall, 1953, An analytical method of calculating variable diffusion coefficients, J. Chem. Phys., 21, 87, 10.1063/1.1698631
Andersson, 1992, Models for numerical treatment of multicomponent diffusion in simple phases, J. Appl. Phys., 72, 1350, 10.1063/1.351745
Jönsson, 1994, Assessment of the mobility of carbon in fcc C-Cr-Fe-Ni alloys, Z. Metallkd., 85, 502
Redlich, 1948, Thermodynamics of nonelectrolyte solutions - x-y-t relations in a binary system, Ind. Eng. Chem., 40, 341, 10.1021/ie50458a035
Kirkaldy, 1959, Diffusion in multicomponent metallic systems: iv. A general theorem for construction of multicomponent solutions from solutions of the binary diffusion equation, Can. J. Phys., 37, 30, 10.1139/p59-005
Turchanin, 2008, Thermodynamic assessment of the Cu-Ti-Zr system. II. Cu-Zr and Ti-Zr systems, Powder. Metall. Met. C+., 47
Bai, 2019, Diffusivities and atomic mobilities in bcc Ti-Nb-Ta alloys, Calphad, 65, 299, 10.1016/j.calphad.2019.03.012
Li, 2011, Assessment of diffusion mobility for the bcc phase of the Ti–Al–Cr system, Calphad, 35, 384, 10.1016/j.calphad.2011.05.006
Neumann, 1990, Self-diffusion in body-centred cubic metals: analysis of experimental data, Philos. Mag. A, 61, 563, 10.1080/01418619008231935
Köhler, 1988, On the correlation between self-diffusion and the low-frequency LA ⅔⟨111⟩ phonon mode in b.c.c. metals, Philos. Mag. A, 58, 769, 10.1080/01418618808209952