Diffusivities and atomic mobilities in bcc Ti–Mo–Ta alloys

Weimin Bai1,2, Jingjing Nie1, Songsong Hu1, Xinming Wang1, Zhi Li1, Fucheng Yin1, Jianguo Lin1, Ligang Zhang2, Libin Liu2
1School of Materials Science and Engineering, Xiangtan University, Xiangtan 411105, China
2School of Materials Science and Engineering, Central South University, Changsha 410083, China

Tài liệu tham khảo

Zhang, 2021, Pseudo-spinodal mechanism approach to designing a near-β high-strength titanium alloy through high-throughput technique, Rare Met., 40, 2099, 10.1007/s12598-020-01560-9 Geetha, 2009, Ti based biomaterials, the ultimate choice for orthopaedic implants – a review, Prog. Mater. Sci., 54, 397, 10.1016/j.pmatsci.2008.06.004 Niinomi, 2015, Titanium alloys for biomedical applications, 179 Gogia, 2005, High-temperature titanium alloys, Defence Sci. J., 55, 149, 10.14429/dsj.55.1979 Wu, 2017, Investigation of the influence of Fe on the microstructure and properties of Ti5553 near-β titanium alloy with combinatorial approach, Int. J. Mater. Res., 108, 355, 10.3139/146.111487 Eisenbarth, 2004, Biocompatibility of β-stabilizing elements of titanium alloys, Biomaterials, 25, 5705, 10.1016/j.biomaterials.2004.01.021 Biesiekierski, 2012, A new look at biomedical Ti-based shape memory alloys, Acta Biomater., 8, 1661, 10.1016/j.actbio.2012.01.018 Song, 1999, Theoretical study of the effects of alloying elements on the strength and modulus of β-type bio-titanium alloys, Mater. Sci. Eng., A., 260, 269, 10.1016/S0921-5093(98)00886-7 Gordin, 2005, Synthesis, structure and electrochemical behavior of a beta Ti-12Mo-5Ta alloy as new biomaterial, Mater. Lett., 59, 2936, 10.1016/j.matlet.2004.09.063 Ling, 2021, A CALPHAD-type Young’s modulus database of Ti-rich Ti–Nb–Zr–Mo system, Calphad, 73, 10.1016/j.calphad.2021.102255 Marker, 2018, Thermodynamic description of the Ti-Mo-Nb-Ta-Zr system and its implications for phase stability of Ti bio-implant materials, Calphad, 61, 72, 10.1016/j.calphad.2018.02.004 Elias, 2006, Microstructural and mechanical characterization of biomedical Ti–Nb–Zr(–Ta) alloys, Mater. Sci. Eng., A, 432, 108, 10.1016/j.msea.2006.06.013 Li, 2021, Towards high-throughput microstructure simulation in compositionally complex alloys via machine learning, Calphad, 72, 10.1016/j.calphad.2020.102231 Helander, 1999, Diffusion in the B2-b.c.c. phase of the Al–Fe–Ni system—application of a phenomenological model, Acta Mater., 47, 3291, 10.1016/S1359-6454(99)00174-3 Zhang, 2017, CALPHAD-type modeling of diffusion kinetics in multicomponent alloys, Handb. Solid State Diffus., 1, 321 Chen, 2004, Quantitative phase field modeling of diffusion-controlled precipitate growth and dissolution in Ti–Al–V, Scripta Mater., 50, 471, 10.1016/j.scriptamat.2003.10.032 Chen, 2016, Exploring the phase transformation in β-Quenched Ti-55531 alloy during continuous heating via dilatometric measurement, microstructure characterization, and diffusion analysis, Metall. Mater. Trans., 1 Zhang, 2015, Incorporating the CALPHAD sublattice approach of ordering into the phase-field model with finite interface dissipation, Acta Mater., 88, 156, 10.1016/j.actamat.2014.11.037 Fleck, 2021, Phase-field modeling of precipitation microstructure evolution in multicomponent alloys during industrial heat treatments, 70 Chen, 2021, Examination of dendritic growth and microsegregation during solidification of Al–Li binary alloy using the phase-field simulation coupling CALPHAD data, Calphad, 74, 10.1016/j.calphad.2021.102271 Lukas, 2007 1970 Borgenstam, 2000, DICTRA, a tool for simulation of diffusional transformations in alloys, J. Phase Equil., 21, 269, 10.1361/105497100770340057 Andersson, 2002, Thermo-Calc & DICTRA, computational tools for materials science, Calphad, 26, 273, 10.1016/S0364-5916(02)00037-8 Chen, 2018, Investigations on diffusion behaviors in Ti–rich Ti–Nb–Zr–Cr system: experimental measurement and CALPHAD modeling, Calphad, 62, 223, 10.1016/j.calphad.2018.07.005 Neumann, 2009 Thibon, 1998, Interdiffusion in the β Mo-Ti solid solution at high temperatures, Z. Metallkd., 89, 187 Zhu, 2016, Measurement of interdiffusion and impurity diffusion coefficients in the bcc phase of the Ti–X (X = Cr, Hf, Mo, Nb, V, Zr) binary systems using diffusion multiples, J. Mater. Sci., 1 Sprengel, 1997, Interdiffusion in binary β-titanium alloys, Defect Diffusion Forum, 143–147, 431, 10.4028/www.scientific.net/DDF.143-147.431 Fedotov, 1969, Mutual diffusion in systems Ti-V, Ti-Nb, Ti-Ta, Ti-Mo, Fiz. Met. Metalloved., 27, 873 Ansel, 1998, Interdiffusion in the body cubic centered β-phase of Ta–Ti alloys, Acta Mater., 46, 423, 10.1016/S1359-6454(97)00272-3 Chen, 2018, Experimental determination of impurity and interdiffusion coefficients in seven Ti and Zr binary systems using diffusion multiples, Metall. Mater. Trans., 49, 3108, 10.1007/s11661-018-4645-9 Guillemot, 2001, On the diffusion in the Mo–Ta refractory system, Int. J. Refract. Metals Hard Mater., 19, 183, 10.1016/S0263-4368(01)00040-3 Liu, 2009, Computational study of mobilities and diffusivities in bcc Ti-Zr and bcc Ti-Mo alloys, J. Phase Equilibria Diffus., 30, 334, 10.1007/s11669-009-9557-3 Liu, 2010, Study of atomic mobilities and diffusion characteristics in bcc Ti–Ta and Ta–W alloys, Calphad, 34, 310, 10.1016/j.calphad.2010.06.004 Liu, 2012, Diffusion characteristics and atomic mobilities for bcc refractory Mo–Ta, Mo–W, and Mo–Nb alloys, Calphad, 36, 110, 10.1016/j.calphad.2011.12.004 Chen, 2018, Recommendation for reliable evaluation of diffusion coefficients from diffusion profiles with steep concentration gradients, Materialia, 2, 63, 10.1016/j.mtla.2018.06.011 Shim, 1996, A thermodynamic evaluation of the Ti-Mo-C system, Metall. Mater. Trans. B, 27, 955, 10.1007/s11663-996-0009-8 Saunders, 1994 Xiong, 2004, Thermodynamic assessment of the Mo–Nb–Ta system, Calphad, 28, 133, 10.1016/j.calphad.2004.07.002 Larsson, 2021, On the use of Boltzmann’s transformation to solve diffusion problems, Calphad, 73, 10.1016/j.calphad.2021.102261 Kirkaldy, 1957, Diffusion in multicomponent metallic systems, Can. J. Phys., 35, 435, 10.1139/p57-047 Whittle, 1974, The measurement of diffusion coefficients in ternary systems, Scripta Metall., 8, 883, 10.1016/0036-9748(74)90311-1 Zhang, 2013, Extracting interdiffusion coefficients from binary diffusion couples using traditional methods and a forward-simulation method, Intermetallics, 34, 132, 10.1016/j.intermet.2012.11.012 Cui, 2008, Computational study of atomic mobility in Co-Fe-Ni ternary fcc alloys, J. Phase Equilibria Diffus., 29, 312, 10.1007/s11669-008-9341-9 Wang, 2017, Mapping of diffusion and nanohardness properties of fcc Co-Al-V alloys using ternary diffusion couples, Metall. Mater. Trans., 48, 4286, 10.1007/s11661-017-4170-2 Bai, 2019, Diffusivities and atomic mobilities in bcc Ti-Zr-Nb alloys, Calphad, 64, 160, 10.1016/j.calphad.2018.12.003 Chen, 2014, Diffusion research in BCC Ti-Al-Mo ternary alloys, Metall. Mater. Trans., 45, 1647, 10.1007/s11661-014-2245-x Hall, 1953, An analytical method of calculating variable diffusion coefficients, J. Chem. Phys., 21, 87, 10.1063/1.1698631 Andersson, 1992, Models for numerical treatment of multicomponent diffusion in simple phases, J. Appl. Phys., 72, 1350, 10.1063/1.351745 Jönsson, 1994, Assessment of the mobility of carbon in fcc C-Cr-Fe-Ni alloys, Z. Metallkd., 85, 502 Redlich, 1948, Thermodynamics of nonelectrolyte solutions - x-y-t relations in a binary system, Ind. Eng. Chem., 40, 341, 10.1021/ie50458a035 Kirkaldy, 1959, Diffusion in multicomponent metallic systems: iv. A general theorem for construction of multicomponent solutions from solutions of the binary diffusion equation, Can. J. Phys., 37, 30, 10.1139/p59-005 Turchanin, 2008, Thermodynamic assessment of the Cu-Ti-Zr system. II. Cu-Zr and Ti-Zr systems, Powder. Metall. Met. C+., 47 Bai, 2019, Diffusivities and atomic mobilities in bcc Ti-Nb-Ta alloys, Calphad, 65, 299, 10.1016/j.calphad.2019.03.012 Li, 2011, Assessment of diffusion mobility for the bcc phase of the Ti–Al–Cr system, Calphad, 35, 384, 10.1016/j.calphad.2011.05.006 Neumann, 1990, Self-diffusion in body-centred cubic metals: analysis of experimental data, Philos. Mag. A, 61, 563, 10.1080/01418619008231935 Köhler, 1988, On the correlation between self-diffusion and the low-frequency LA ⅔⟨111⟩ phonon mode in b.c.c. metals, Philos. Mag. A, 58, 769, 10.1080/01418618808209952