Diffusive reaction dynamics on invariant free energy profiles

Sergei V. Krivov1, Martin Karplus1,2
1*Laboratoiré de Chimie Biophysique, Institut de Science et d'Ingénierie Supramoléculaires, Université Louis Pasteur, 67000 Strasbourg, France; and
2Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138

Tóm tắt

A fundamental problem in the analysis of protein folding and other complex reactions in which the entropy plays an important role is the determination of the activation free energy from experimental measurements or computer simulations. This article shows how to combine minimum-cut-based free energy profiles ( F C ), obtained from equilibrium molecular dynamics simulations, with conventional histogram-based free energy profiles ( F H ) to extract the coordinate-dependent diffusion coefficient on the F C (i.e., the method determines free energies and a diffusive preexponential factor along an appropriate reaction coordinate). The F C , in contrast to the F H , is shown to be invariant with respect to arbitrary transformations of the reaction coordinate, which makes possible partition of configuration space into basins in an invariant way. A “natural coordinate,” for which F H and F C differ by a multiplicative constant (constant diffusion coefficient), is introduced. The approach is illustrated by a model one-dimensional system, the alanine dipeptide, and the folding reaction of a double β-hairpin miniprotein. It is shown how the results can be used to test whether the putative reaction coordinate is a good reaction coordinate.

Từ khóa


Tài liệu tham khảo

10.1002/(SICI)1521-3773(19980420)37:7<868::AID-ANIE868>3.0.CO;2-H

10.1146/annurev.physchem.52.1.499

10.1016/S1359-0278(96)00060-0

10.1073/pnas.96.11.6031

10.1021/jp993555t

10.1016/S0031-8914(40)90098-2

10.1073/pnas.93.21.11615

10.1038/nature01609

10.1002/(SICI)1097-0134(19980101)30:1<2::AID-PROT2>3.0.CO;2-R

10.1016/j.sbi.2004.01.013

10.1073/pnas.0406234101

10.1021/jp067027a

10.1063/1.471317

10.1021/jp060039b

10.1063/1.1517606

10.1021/jp045544s

10.1073/pnas.0408098102

10.1021/jp045546c

10.1063/1.475393

10.1073/pnas.0603553103

10.1002/prot.20310

10.1063/1.436049

D Chandler Introduction to Modern Statistical Mechanics (Oxford Univ Press, New York), pp. 288 (1987).

W E, E Vanden-Eijnden, Metastability, conformational dynamics, and transition pathways in complex systems. Multiscale Modelling and Simulation, eds S Attinger, P Koumoutsakos (Springer), pp. 277–312 (2004).

10.1002/jcc.540040211

10.1063/1.472061

10.1006/jmbi.1998.2172

10.1063/1.1861885

10.1016/0009-2614(79)80114-1

10.1021/jp953748q

10.1073/pnas.190324897

10.1016/j.jmb.2004.06.063

10.1002/prot.10001

10.1021/bi800049z

10.1021/jp076533c