Diffusion tensor fiber tracking of human brain connectivity: aquisition methods, reliability analysis and biological results

NMR in Biomedicine - Tập 15 Số 7-8 - Trang 494-515 - 2002
Nicolás Lori1,2, Erbil Akbudak2, Joshua S. Shimony2, Thomas S. Cull2, Abraham Z. Snyder2, R. K. Guillory2, Thomas E. Conturo1,2
1Department of Physics, Washington University, 1 Brookings Drive, St Louis, MO 63130, USA
2Mallinckrodt Institute of Radiology, Washington University School of Medicine, 4525 Scott Avenue, St Louis, MO 63110, USA

Tóm tắt

AbstractWe present a description, biological results and a reliability analysis for the method of diffusion tensor tracking (DTT) of white matter fiber pathways. In DTT, diffusion‐tensor MRI (DT‐MRI) data are collected and processed to visualize the line trajectories of fiber bundles within white matter (WM) pathways of living humans. A detailed description of the data acquisition is given. Technical aspects and experimental results are illustrated for the geniculo‐calcarine tract with broad projections to visual cortex, occipital and parietal U‐fibers, and the temporo‐calcarine ventral pathway. To better understand sources of error and to optimize the method, accuracy and precision were analyzed by computer simulations. In the simulations, noisy DT‐MRI data were computed that would be obtained for a WM pathway having a helical trajectory passing through gray matter. The error vector between the real and ideal track was computed, and random errors accumulated with the square root of track length consistent with a random‐walk process. Random error was most dependent on signal‐to‐noise ratio, followed by number of averages, pathway anisotropy and voxel size, in decreasing order. Systematic error only occurred for a few conditions, and was most dependent on the stepping algorithm, anisotropy of the surrounding tissue, and non‐equal voxel dimensions. Both random and systematic errors were typically below the voxel dimension. Other effects such as track rebound and track recovery also depended on experimental conditions. The methods, biological results and error analysis herein may improve the understanding and optimization of DTT for use in various applications in neuroscience and medicine. Copyright © 2002 John Wiley & Sons, Ltd.

Từ khóa


Tài liệu tham khảo

10.1002/1531-8249(199902)45:2<265::AID-ANA21>3.0.CO;2-3

Lori NF, 1999, Tracking neuronal fibers in the living human brain with diffusion MRI

10.1073/pnas.96.18.10422

10.1002/1522-2594(200010)44:4<625::AID-MRM17>3.0.CO;2-O

10.1006/nimg.2000.0607

LaVail JH, 1975, The retrograde transport method, Fed. Proc., 34, 1618

10.1111/j.1365-2818.1988.tb04642.x

Steinbusch HW, 1988, Immunohistochemical localization of monoamines and cyclic nucleotides. Their application in quantitative immunofluorescence studies and tracing monoaminergic neuronal connections, Acta Histochem. Suppl., 35, 86

10.1016/0166-2236(89)90040-4

10.1016/0165-0270(92)90089-V

10.1016/0165-0270(94)00127-3

10.1242/dev.101.4.697

10.1002/cne.903550404

10.1006/nimg.2001.0882

10.1038/361109a0

Dejerine J, 1895

Critchley M, 1966, The Parietal Lobe

10.1148/radiology.191.2.8153321

10.1073/pnas.83.4.1140

10.1146/annurev.ps.45.020194.002001

10.1073/pnas.89.13.5951

10.1073/pnas.89.12.5675

10.1002/mrm.1910250220

10.1073/pnas.151125698

10.1002/(SICI)1522-2594(199912)42:6<1123::AID-MRM17>3.0.CO;2-H

10.1016/S0764-4469(00)00140-2

10.1016/S0006-3495(94)80775-1

10.1002/mrm.1910310209

10.1148/radiology.199.2.8668784

BasserPJ MattielloJ Le BihanD.Anisotropic diffusion: MR diffusion tensor imaging. InDiffusion and Perfusion Magnetic Resonance Imaging: Applications to Functional MRI Le Bihan D (ed.). Raven Press: New York 1995;140–149.

10.1006/jmrb.1996.0086

10.1002/mrm.1910350319

10.1148/radiology.201.3.8939209

Moseley ME, 1990, Diffusion‐weighted MR imaging of acute stroke: correlation with T2‐weighted and magnetic susceptibility‐enhanced MR imaging in cats, Am. J. Neuroradiol., 11, 423

10.1148/radiology.177.2.2217776

10.1097/00004728-199011000-00001

10.1002/mrm.1910320508

10.1002/mrm.1910340210

10.1002/nbm.1940080706

10.1006/jmre.2000.2209

10.1002/(SICI)1522-2594(199909)42:3<515::AID-MRM14>3.0.CO;2-Q

Muthupallai R, 1999, Navigator aided, multishot EPI diffusion images of brain with complete orientation and anisotropy information

10.1006/jmre.1998.1673

Lori NF, 2001, Diffusion Tensor Tracking of Neuronal Fiber Pathways in the Living Human Brain. PhD Thesis, Physics

Lori NF, 2001, Diffusion NMR and MRI: From the Single Molecule to the Entire Human Brain, 26

Lori NF, 2001, Diffusion MRI tracking of amygdalo‐calcarine pathways: replication and detailed error study, 83

10.1148/radiology.212.3.r99au51770

10.1002/jmri.1107

Snyder AZ, 1995, Quantification of Brain Function Using PET, 131

10.1002/mrm.1910360620

10.1006/jmra.1994.1103

Press WH, 1992, Numerical Recipes in C: the Art of Scientific Computing

Crank J, 1975, The Mathematics of Diffusion

Tuch DS, 1999, High angular resolution diffusion imaging of the human brain

WedeenVJ ReeseTG TuchDS WeigelMR DouJ‐G WeiskoffRM ChesslerD.Mapping fiber orientation spectra in cerebral white matter with Fourier‐transform diffusion MRI. In Proceedings of the International Society for Magnetic Resonance in Medicine Denver CO 2000;82.

LoriNF ConturoTE.Diffusion time assignment and q‐space formalism for finite‐duration diffusion‐encoding gradients: simulation of 3D random walks. InDiffusion MRI: Biophysical Issues Saint‐Malo France 10–12 March 2002;9–12.

PierpaoliC BasserPJ.Toward a quantitative assessment of diffusion anisotropyMagn. Reson. Med.1996; 36:893–906[Published erratum appears inMagn. Reson. Med. 1997;37: 972].

10.1002/(SICI)1522-2586(199906)9:6<804::AID-JMRI7>3.0.CO;2-B

10.1002/jmri.1880020206

Lori NF, 2000, Diffusion tensor tracking of human neuronal fiber bundles: simulation of effects of noise, voxel size, and data interpolation, 775

Lazar M, 2001, Error analysis of white matter tracking algorithms (streamlines and tensorlines) for DT‐MRI, 506

Cantor CR, 1980, Biophysical Chemistry Part I: the Conformation of Biological Macromolecules

10.1016/0022-2364(92)90249-7

10.1118/1.595711

10.1097/00004728-198306000-00001

10.1002/cne.902300402

10.1016/S1053-8119(01)91371-0

10.1002/mrm.1315

10.1006/nimg.2001.0861

Leon‐Garcia A, 1994, Probability and Random Processes for Electrical Engineers

10.1002/mrm.1910150308

10.1002/1522-2594(200101)45:1<29::AID-MRM1005>3.0.CO;2-Z

10.1016/S0730-725X(98)00098-8

10.1002/mrm.1910360612

10.1002/1522-2594(200007)44:1<41::AID-MRM8>3.0.CO;2-O

10.1002/1522-2594(200103)45:3<448::AID-MRM1059>3.0.CO;2-W

10.1016/0730-725X(93)90225-3

10.1002/mrm.1140

10.1016/S0730-725X(00)00153-3