Diffusion kurtosis imaging tractography reveals disrupted white matter structural networks in children with obstructive sleep apnea syndrome

Springer Science and Business Media LLC - Tập 18 - Trang 92-105 - 2023
Yanhua Li1,2, Hongwei Wen3, Wenfeng Li4, Yun Peng1, Hongbin Li5, Jun Tai6, Tingting Ji5, Lin Mei5, Yue Liu1,7
1Department of Radiology, National Center for Children’s Health, Beijing Children’s Hospital, Capital Medical University, Beijing, China
2School of Medicine, Nankai University, Tianjin, China
3Key Laboratory of Cognition and Personality, Ministry of Education, Faculty of Psychology, Southwest University, Chongqing, China
4Department of Radiology, Beijing Daxing District Hospital of Integrated Chinese and Western Medicine, Beijing, China
5Department of Otolaryngology, Head and Neck Surgery, Beijing Children’s Hospital, Capital Medical University, National Center for Children’s Health, Beijing, China
6Department of Otolaryngology, Head and Neck Surgery, Children’s Hospital, Capital Institute of Pediatrics, Beijing, China
7Children’s Hospital Affiliated to Zhengzhou University, Zhengzhou, China

Tóm tắt

To assess the disruptions of brain white matter (WM) structural network in children with obstructive sleep apnea (OSA) using diffusion kurtosis imaging (DKI). We use DKI tractography to construct individual whole-brain, region-level WM networks in 40 OSA and 28 healthy children. Then, we apply graph theory approaches to analyze whether OSA children would show altered global and regional network topological properties and whether these alterations would significantly correlate with the clinical characteristics of OSA. We found that both OSA and healthy children showed an efficient small-world organization and highly similar hub distributions in WM networks. However, characterized by kurtosis fractional anisotropy (KFA) weighted networks, OSA children exhibited decreased global and local efficiency, increased shortest path length compared with healthy children. For regional topology, OSA children exhibited significant decreased nodal betweenness centrality (BC) in the bilateral medial orbital superior frontal gyrus (ORBsupmed), right orbital part superior frontal gyrus (ORBsup), insula, postcentral gyrus, left middle temporal gyrus (MTG), and increased nodal BC in the superior parietal gyrus, pallidum. Intriguingly, the altered nodal BC of multiple regions (right ORBsupmed, ORBsup and left MTG) within default mode network showed significant correlations with sleep parameters for OSA patients. Our results suggest that children with OSA showed decreased global integration and local specialization in WM networks, typically characterized by DKI tractography and KFA metric. This study may advance our current understanding of the pathophysiological mechanisms of impaired cognition underlying OSA.

Tài liệu tham khảo

Ali, Tabesh, Jens, H., Jensen, Babak, . . . A. (2011). Estimation of tensors and tensor-derived measures in diffusional kurtosis imaging. Magnetic Resonance in Medicine, 65(3), 823–36. https://doi.org/10.1002/mrm.22655 Bassett, D. S., & Bullmore, E. T. (2017). Small-world brain networks revisited. The Neuroscientist : A Review Journal Bringing Neurobiology, Neurology and Psychiatry, 23(5), 499–516. https://doi.org/10.1177/1073858416667720 Beebe, D. W., & Gozal, D. (2002). Obstructive sleep apnea and the prefrontal cortex: Towards a comprehensive model linking nocturnal upper airway obstruction to daytime cognitive and behavioral deficits. Journal of Sleep Research, 11(1), 1–16. https://doi.org/10.1046/j.1365-2869.2002.00289.x Benjamini, Y., & Hochberg, Y. (2015). Controlling the false discovery rate - a practical and powerful approach to multiple testing. Journal of the Royal Statistical Society, 57(57), 289–300. Berri, R. B., Brooks, R., Garnaldo, C. E., & Harding, S. M. (2018). The AASM Manual for the Scoring of Sleep and Associated Events: Rules, Terminology and Technical Specifications Version 2.5. Darien American Academy of Sleep Medicine. Buckner, R. L., & DiNicola, L. M. (2019). The brain’s default network: updated anatomy, physiology and evolving insights. Nature Reviews. Neuroscience, 20(10), 593–608. https://doi.org/10.1038/s41583-019-0212-7 Bullmore, E., & Sporns, O. (2009). Complex brain networks: graph theoretical analysis of structural and functional systems. Nature Reviews. Neuroscience, 10(3), 186–198. https://doi.org/10.1038/nrn2575 Chen, H.-L., Lu, C.-H., Lin, H.-C., Chen, P.-C., Chou, K.-H., Lin, W.-M., . . . Lin, W.-C. (2015). White matter damage and systemic inflammation in obstructive sleep apnea. Sleep, 38(3), 361–370. https://doi.org/10.5665/sleep.4490 Chen, L., Fan, X., Li, H., Ye, C., Yu, H., Gong, H., . . . Yan, L. (2018). Topological Reorganization of the Default Mode Network in Severe Male Obstructive Sleep Apnea. Frontiers in neurology, 9, 363. https://doi.org/10.3389/fneur.2018.00363 Chen, H., Huang, C., Lin, H., Lu, C., Chen, P., Chou, K., . . . Lin, W. (2020). White matter alteration and autonomic impairment in obstructive sleep apnea. Journal of clinical sleep medicine : JCSM : official publication of the American Academy of Sleep Medicine, 16(2), 293–302. https://doi.org/10.5664/jcsm.8186 Cross, N., Memarian, N., Duffy, S., Paquola, C., LaMonica, H., D'Rozario, A., . . . Naismith, S. (2018). Structural brain correlates of obstructive sleep apnoea in older adults at risk for dementia. The European respiratory journal, 52(1). https://doi.org/10.1183/13993003.00740-2018 Crossley, N., Mechelli, A., Scott, J., Carletti, F., Fox, P., McGuire, P., & Bullmore, E. (2014). The hubs of the human connectome are generally implicated in the anatomy of brain disorders. Brain : A Journal of Neurology, 137, 2382–2395. https://doi.org/10.1093/brain/awu132 Glenn, G. R., Helpern, J. A., Tabesh, A., & Jensen, J. H. (2015a). Optimization of white matter fiber tractography with diffusional kurtosis imaging. NMR in Biomedicine, 28(10), 1245–1256. https://doi.org/10.1002/nbm.3374 Glenn, G. R., Helpern, J. A., Tabesh, A., & Jensen, J. H. (2015b). Quantitative assessment of diffusional kurtosis anisotropy. NMR in Biomedicine, 28(4), 448–459. https://doi.org/10.1002/nbm.3271 Hansen, B., & Jespersen, S. N. (2016). Kurtosis fractional anisotropy, its contrast and estimation by proxy. Scientific Reports, 6, 23999. https://doi.org/10.1038/srep23999 Heuvel Van den, M. P., & Sporns, O. (2013). Network hubs in the human brain. Trends in Cognitive Sciences, 17(12), 683–696. https://doi.org/10.1016/j.tics.2013.09.012 Jensen, J. H., & Helpern, J. A. (2010). MRI quantification of non-Gaussian water diffusion by kurtosis analysis. NMR in Biomedicine, 23(7), 698–710. https://doi.org/10.1002/nbm.1518 Jensen, J. H., Helpern, J. A., & Tabesh, A. (2014). Leading Non-Gaussian Corrections for Diffusion Orientation Distribution Function. NMR in Biomedicine, 27(2), 202–211. https://doi.org/10.1002/nbm.3053 Kamagata, K., Tomiyama, H., Hatano, T., Motoi, Y., Abe, O., Shimoji, K., . . . Aoki, S. (2014). A preliminary diffusional kurtosis imaging study of Parkinson disease: comparison with conventional diffusion tensor imaging. Neuroradiology, 56(3), 251–258. https://doi.org/10.1007/s00234-014-1327-1 Kerner, N. A., & Roose, S. P. (2016). Obstructive Sleep Apnea is Linked to Depression and Cognitive Impairment: Evidence and Potential Mechanisms. The American Journal of Geriatric Psychiatry : Official Journal of the American Association for Geriatric Psychiatry, 24(6), 496–508. https://doi.org/10.1016/j.jagp.2016.01.134 Kong, L., Li, H., Shu, Y., Liu, X., Li, P., Li, K., . . . Peng, D. (2021). Aberrant Resting-State Functional Brain Connectivity of Insular Subregions in Obstructive Sleep Apnea. Frontiers in neuroscience, 15, 765775. https://doi.org/10.3389/fnins.2021.765775 Kumar, R., Chavez, A., Macey, P., Woo, M., Yan-Go, F., & Harper, R. (2012a). Altered global and regional brain mean diffusivity in patients with obstructive sleep apnea. Journal of Neuroscience Research, 90(10), 2043–2052. https://doi.org/10.1002/jnr.23083 Lal, C., Weaver, T., Bae, C., & Strohl, K. (2021). Excessive Daytime Sleepiness in Obstructive Sleep Apnea. Mechanisms and Clinical Management. Annals of the American Thoracic Society, 18(5), 757–768. https://doi.org/10.1513/AnnalsATS.202006-696FR Lee, M.-H., Sin, S., Lee, S., Park, H., Wagshul, M. E., Zimmerman, M. E., & Arens, R. (2022). Altered cortical structure network in children with obstructive sleep apnea. Sleep, 45(5), zsac030. https://doi.org/10.1093/sleep/zsac030 Lee, M.-H., Yun, C.-H., Min, A., Hwang, Y. H., Lee, S. K., Kim, D. Y., . . . Shin, C. (2019). Altered structural brain network resulting from white matter injury in obstructive sleep apnea. Sleep, 42(9): zsz120. https://doi.org/10.1093/sleep/zsz120 Liu, J., & Lynn, R. (2013). An Increase of Intelligence in China 1986–2012. Intelligence, 41(5), 10.1016. https://doi.org/10.1016/j.intell.2013.06.017 Locke, B. W., Lee, J. J., & Sundar, K. M. (2022). OSA and Chronic Respiratory Disease: Mechanisms and Epidemiology. International Journal of Environmental Research and Public Health, 19(9), 5473. https://doi.org/10.3390/ijerph19095473 Macey, P., Kheirandish-Gozal, L., Prasad, J., Ma, R., Kumar, R., Philby, M., & Gozal, D. (2018). Altered Regional Brain Cortical Thickness in Pediatric Obstructive Sleep Apnea. Frontiers in Neurology, 9, 4. https://doi.org/10.3389/fneur.2018.00004 Macey, K. E., Macey, P. M., Woo, M. A., Henderson, L. A., Frysinger, R. C., Harper, R. K., . . . Harper, R. M. (2006). Inspiratory loading elicits aberrant fMRI signal changes in obstructive sleep apnea. Respiratory physiology & neurobiology, 151(1), 44–60. https://doi.org/10.1016/j.resp.2005.05.024 Marcus, C. L., Brooks, L. J., Draper, K. A., Gozal, D., Halbower, A. C., Jones, J., . . . Pediatrics, A. A. o. (2012). Diagnosis and management of childhood obstructive sleep apnea syndrome. Pediatrics, 130(3), 576–584. https://doi.org/10.1542/peds.2012-1671 Marrale, M., Collura, G., Brai, M., Toschi, N., Midiri, F., Tona, G. L., . . . Gagliardo, C. (2016). Physics, Techniques and Review of Neuroradiological Applications of Diffusion Kurtosis Imaging (DKI). Clinical neuroradiology, 26(4), 391–403. https://doi.org/10.1007/s00062-015-0469-9 Mukherjee, P., Berman, J. I., Chung, S. W., Hess, C. P., & Henry, R. G. (2008). Diffusion tensor MR imaging and fiber tractography: Theoretic underpinnings. AJNR. American Journal of Neuroradiology, 29(4), 632–641. https://doi.org/10.3174/ajnr.A1051 Nakano, K. (2000). Neural circuits and topographic organization of the basal ganglia and related regions. Brain & Development, 22(Suppl 1), S5-16. https://doi.org/10.1016/s0387-7604(00)00139-x Oldham, S., Ball, G., & Fornito, A. (2022). Early and late development of hub connectivity in the human brain. Current Opinion In Psychology, 44, 321–329. https://doi.org/10.1016/j.copsyc.2021.10.010RB Rubinov, M., & Sporns, O. (2010). Complex network measures of brain connectivity: Uses and interpretations. NeuroImage, 52(3), 1059–1069. https://doi.org/10.1016/j.neuroimage.2009.10.003 Saboisky, J. P., Butler, J. E., Gandevia, S. C., & Eckert, D. J. (2012). Functional role of neural injury in obstructive sleep apnea. Frontiers in Neurology, 3, 95. https://doi.org/10.3389/fneur.2012.00095 Salsone, M., Caligiuri, M., Castronovo, V., Canessa, N., Marelli, S., Quattrone, A., . . . Ferini-Strambi, L. (2021). Microstructural changes in normal-appearing white matter in male sleep apnea patients are reversible after treatment: A pilot study. Journal of neuroscience research, 99(10), 2646–2656. https://doi.org/10.1002/jnr.24858 Sateia, M. J. (2014). International classification of sleep disorders-third edition: Highlights and modifications. Chest, 146(5), 1387–1394. https://doi.org/10.1378/chest.14-0970 Sherman, S. M. (2016). Thalamus plays a central role in ongoing cortical functioning. Nature Neuroscience, 19(4), 533–541. https://doi.org/10.1038/nn.4269 Tan, H.-L., Gozal, D., & Kheirandish-Gozal, L. (2013). Obstructive sleep apnea in children: A critical update. Nature and Science of Sleep, 5, 109–123. https://doi.org/10.2147/nss.S51907 Tzourio-Mazoyer, N., Landeau, B., Papathanassiou, D., Crivello, F., Etard, O., Delcroix, N., . . . Joliot, M. (2002). Automated anatomical labeling of activations in SPM using a macroscopic anatomical parcellation of the MNI MRI single-subject brain. Neuroimage, 15(1), 273–289. https://doi.org/10.1006/nimg.2001.0978 Vlooswijk, M. C. G., Vaessen, M. J., Jansen, J. F. A., Krom, M. C. F. T. M. d., Majoie, H. J. M., Hofman, P. A. M., . . . Backes, W. H. (2011). Loss of network efficiency associated with cognitive decline in chronic epilepsy. Neurology, 77(10), 938-944https://doi.org/10.1212/WNL.0b013e31822cfc2f Vos, S. B., Jones, D. K., Jeurissen, B., Viergever, M. A., & Leemans, A. (2012). The influence of complex white matter architecture on the mean diffusivity in diffusion tensor MRI of the human brain. NeuroImage, 59(3), 2208–2216. https://doi.org/10.1016/j.neuroimage.2011.09.086 Wang, J., Wang, X., Xia, M., Liao, X., Evans, A., & He, Y. (2015). GRETNA: A graph theoretical network analysis toolbox for imaging connectomics. Frontiers in Human Neuroscience, 9, 386. https://doi.org/10.3389/fnhum.2015.00386 Wang, X., Seguin, C., Zalesky, A., Wong, W.-W., Chu, W.C.-W., & Tong, R.K.-Y. (2019). Synchronization lag in post stroke: relation to motor function and structural connectivity. Network neuroscience (Cambridge, Mass.), 3(4), 1121–1140. https://doi.org/10.1162/netn_a_00105 Wang, H., Wen, H., Li, J., Chen, Q., Li, S., & Wang, Z. (2023). Disrupted topological organization of white matter structural networks in high myopia patients revealed by diffusion kurtosis imaging and tractography. Frontiers in Neuroscience, 17, 1158928. https://doi.org/10.3389/fnins.2023.1158928 Wei, Y., Bresser, T., Wassing, R., Stoffers, D., Someren, E. J. W. V., & Foster-Dingley, J. C. (2019). Brain structural connectivity network alterations in insomnia disorder reveal a central role of the right angular gyrus. NeuroImage. Clinical, 24, 102019. https://doi.org/10.1016/j.nicl.2019.102019 Wen, H., Liu, Y., Rekik, I., Wang, S., Zhang, J., Zhang, Y., . . . He, H. (2017). Disrupted topological organization of structural networks revealed by probabilistic diffusion tractography in Tourette syndrome children. Human brain mapping, 38(8), 3988–4008. https://doi.org/10.1002/hbm.23643 Wen, H., Liu, Y., Rekik, I., Wang, S., Chen, Z., Zhang, J., . . . He, H. (2018). Combining Disrupted and Discriminative Topological Properties of Functional Connectivity Networks as Neuroimaging Biomarkers for Accurate Diagnosis of Early Tourette Syndrome Children. Mol Neurobiol, 55(4), 3251–3269. https://doi.org/10.1007/s12035-017-0519-1 Yong, H., Jinhui, W., Liang, W., Chen, Z. J., Chaogan, Y., Hong, Y., . . . Yufeng, Z. (2009). Uncovering Intrinsic Modular Organization of Spontaneous Brain Activity in Humans. Plos One, 4(4), e5226. https://doi.org/10.1371/journa.lpone.0005226 Zhu, J., Zhuo, C., Qin, W., Wang, D., Ma, X., Zhou, Y., & Yu, C. (2015). Performances of diffusion kurtosis imaging and diffusion tensor imaging in detecting white matter abnormality in schizophrenia. NeuroImage. Clinical, 7, 170–176. https://doi.org/10.1016/j.nicl.2014.12.008