Diffusion in Confined Geometries

ChemPhysChem - Tập 10 Số 1 - Trang 45-54 - 2009
P. S. Burada1, Peter Hänggi1, Fabio Marchesoni2, Gerhard Schmid1, Peter Talkner1
1Institut für Physik, Universität Augsburg, Universitätsstr. 1, 86135 Augsburg (Germany), Fax: (+49) 821 598 3222
2Dipartimento di Fisica, Università di Camerino, Via Madonna delle Carceri 9, 62032 Camerino, Italy

Tóm tắt

AbstractDiffusive transport of particles or, more generally, small objects, is a ubiquitous feature of physical and chemical reaction systems. In configurations containing confining walls or constrictions, transport is controlled both by the fluctuation statistics of the jittering objects and the phase space available to their dynamics. Consequently, the study of transport at the macro‐ and nanoscales must address both Brownian motion and entropic effects. Herein we report on recent advances in the theoretical and numerical investigation of stochastic transport occurring either in microsized geometries of varying cross sections or in narrow channels wherein the diffusing particles are hindered from passing each other (single‐file diffusion). For particles undergoing biased diffusion in static suspension media enclosed by confining geometries, transport exhibits intriguing features such as 1) a decrease in nonlinear mobility with increasing temperature or also 2) a broad excess peak of the effective diffusion above the free diffusion limit. These paradoxical aspects can be understood in terms of entropic contributions resulting from the restricted dynamics in phase space. If, in addition, the suspension medium is subjected to external, time‐dependent forcing, rectification or segregation of the diffusing Brownian particles becomes possible. Likewise, the diffusion in very narrow, spatially modulated channels is modified via contact particle–particle interactions, which induce anomalous sub‐diffusion. The effective sub‐diffusion constant for a driven single file also develops a resonance‐like structure as a function of the confining coupling constant.

Từ khóa


Tài liệu tham khảo

10.1201/9780203833445

Kärger J., 1992, Diffusion in Zeolites and Other Microporous Solids

10.1021/cr030698

10.1021/cr960406n

Mazo R. M., 2002, Brownian Motion: Fluctuations, Dynamics and Applications

10.1063/1.1895505

P. Hänggi F. Marchesoni arXiv: 0807/1283.

10.1002/andp.19053220806

10.1038/16426

10.1103/PhysRevLett.94.048102

10.1119/1.1648328

10.2217/17435889.2.4.459

10.2217/17435889.2.6.875

10.1063/1.2719193

10.1103/PhysRevE.77.031131

10.1529/biophysj.104.057588

10.1103/PhysRevLett.100.038104

10.1016/S0167-7322(00)00118-5

10.1088/0953-8984/14/46/317

10.1039/B203686J

10.1002/andp.200410121

10.1063/1.1535005

10.1007/s003390201331

10.1002/ange.200504313

10.1002/anie.200504313

10.1002/cphc.200700528

 

10.1103/PhysRevE.58.7781

10.1103/PhysRevLett.80.1552

10.1126/science.285.5430.1046

10.1016/S0375-9601(99)00906-8

10.1103/PhysRevE.65.041927

10.1103/PhysRevE.70.061105

 

10.1103/PhysRevLett.88.190601

10.1103/PhysRevE.66.066132

10.1103/PhysRevLett.98.040601

10.1103/PhysRevB.77.104509

 

10.1103/PhysRevB.22.477

10.1103/PhysRevLett.87.114102

10.1103/PhysRevLett.67.1464

10.1073/pnas.93.24.13770

 

10.1103/PhysRevLett.83.1688

10.1126/science.288.5468.1026

 

10.1063/1.1704288

10.1103/PhysRevA.8.3050

10.1214/aop/1176996493

10.1103/PhysRevA.9.557

 

Lamb H., 1945, Hydrodynamics

Leal L. G., 1992, Laminar Flow and Convective Transport

Warsi Z. U. A., 1992, Fluid Dynamics

10.1103/PhysRevLett.89.188302

10.1126/science.287.5453.625

10.1119/1.10903

Risken H., 1989, The Fokker–Planck Equation, 2nd ed.

10.1016/j.physa.2007.06.030

10.1063/1.1314862

Dresselhaus M. S., 1996, The Science of Fullerenes and Carbon Nanotubes

10.1103/PhysRevA.32.1934

10.1103/RevModPhys.62.251

 

10.1103/PhysRevLett.87.010602

10.1103/PhysRevE.65.031104

Stratonovich R. L., 1958, Radiotekhnika i elektronika, 3, 497

Tikhonov V. I., 1959, Avtom. Telemekh., 20, 1188

10.1063/1.1732899

10.1209/epl/i1999-00510-7

10.1103/PhysRevB.63.094308

 

10.1103/PhysRevE.73.020101

10.1088/0953-8984/19/6/065114

10.1007/978-3-642-86414-8

10.1021/j100189a004

10.1103/PhysRevE.64.061106

10.1103/PhysRevE.74.041203

10.1103/PhysRevE.75.051111

10.1103/PhysRevLett.96.130603

10.1209/0295-5075/80/50009

10.1016/j.biosystems.2008.03.006

10.1103/PhysRevE.61.312

 

10.1038/nature01736

10.1002/1521-396X(200011)182:1<585::AID-PSSA585>3.0.CO;2-4

 

10.1103/PhysRevLett.91.010601

10.1103/PhysRevLett.92.160602

10.1063/1.1490337

10.1103/PhysRevLett.97.106101

 

10.1103/PhysRevB.16.1393

10.1103/PhysRevB.28.5711

10.1016/0021-9517(92)90062-M

10.1103/PhysRevE.55.7753

 

10.1021/j100315a003

10.1021/j100384a047

10.1103/PhysRevLett.76.2762

10.1088/0034-4885/29/1/306

10.1063/1.2803718

10.1007/BF01020803

 

10.1103/PhysRevLett.96.020601

10.1103/PhysRevE.74.051119