Diffusion hypercontractivity via generalized density manifold

Wuchen Li1
1University of South Carolina, Columbia, SC, United States

Tóm tắt

Từ khóa


Tài liệu tham khảo

Amari, S.: Information Geometry and Its Applications, 1st edn. Springer Publishing Company, Incorporated (2016)

Amari, S., Cichocki, A.: Information geometry of divergence functions. Bull. Polish Acad. Sci. Tech. Sci. 58(1), 183–195 (2010)

Ay, N., Jost, J., Lê, H.V., Schwachhöfer, L.: Information Geometry, vol. 64. Springer, Cham (2017)

Bakry, D., Emery, M.: Diffusions hypercontractives. Seminaire de probabilites de Strasbourg 19, 177–206 (1985)

Bakry, D., Gentil, I., Ledoux, M.: Logarithmic Sobolev Inequalities. In: Analysis and Geometry of Markov Diffusion Operators. Grundlehren der mathematischen Wissenschaften (A Series of Comprehensive Studies in Mathematics), vol. 348. Springer, Cham (2014)

Bolley, F., Gentil, I.: Phi-entropy inequalities for diffusion semigroups. Journal de Mathematiques Pures et Appliquees 93(5), 449–473 (2010)

Carrillo, J.A., Lisini, S., Savare, G., Slepcev, D.: Nonlinear mobility continuity equations and generalized displacement convexity. J. Funct. Anal. 258(4), 1273–1309 (2010)

Cardaliaguet, P., Carlier, G., Nazaret, B.: Geodesics for a class of distances in the space of probability measures. Calc. Var. Partial. Differ. Equ. 48, 395–420 (2013)

Chow, S.N., Li, W., Zhou, H.: Entropy dissipation of Fokker-Planck equations on graphs. Discret. Contin. Dyn. Syst. Ser. A 38(10), 4929–4950 (2018)

Cover, T.M., Thomas, J.A.: Elements of Information Theory. Wiley Series in Telecommunications. Wiley, New York (1991)

Csiszar, I., Shields, P.C.: Information theory and statistics: a tutorial. Foundations and Trends™ in Communications and Information Theory 1(4), 417–528 (2004)

Dolbeault, J., Nazaret, B., Savare, G.: A new class of transport distances. Calc. Var. Partial. Differ. Equ. 2, 193–231 (2010)

Dolbeault, J., Nazaret, B., Savare, G.: From Poincare to logarithmic Sobolev inequalities: a gradient flow approach. SIAM J. Math. Anal. (2012)

Gross, L.: Logarithmic Sobolev inequalities. Am. J. Math. 97(4), 1061–1083 (1975)

Jordan, R., Kinderlehrer, D., Otto, F.: The variational formulation of the Fokker-Planck equation. SIAM J. Math. Anal. 29(1), 1–17 (1998)

Juengel, A.: Entropy Methods for Diffusive Partial Differential Equations. Springer Briefs in Mathematics. Springer, New York (2016)

Lafferty, J.D.: The density manifold and configuration space quantization. Trans. Am. Math. Soc. 305(2), 699–741 (1988)

Li, W.: A Study on Stochastic Differential Equations and Fokker-Planck Equations with Applications. phd thesis, (2016)

Li, W.: Transport information geometry: Riemannian calculus on probability simplex. Inf. Geometry 5, 161–207 (2022)

Li, W., Montufar, G.: Ricci curvature for parametric statistics via optimal transport. Inf. Geometry 3, 89–117 (2020)

Li, W., Ying, L.: Hessian transport gradient flows. Res. Math. Sci. 6, 34 (2019)

Lott, J., Villani, C.: Ricci curvature for metric-measure spaces via optimal transport. Ann. Math. 169(3), 903–991 (2009)

Monsaingeon, L., Tamanini, L., Vorotnikov, D.: The Dynamical Schrodinger Problem in Abstract Metric Spaces. arXiv:2012.12005, (2020)

Otto, F.: The geometry of dissipative evolution equations: the porous medium equation. Comm. Partial Differ. Equ. 26(1–2), 101–174 (2001)

Otto, F., Villani, C.: Generalization of an inequality by Talagrand and links with the logarithmic Sobolev inequality. J. Funct. Anal. 173(2), 361–400 (2000)

Sturm, K.T.: On the geometry of metric measure spaces. Acta Math. 196(1), 65–131 (2006)

Villani, C.: Optimal Transport: Old and New. Number 338 in Grundlehren Der Mathematischen Wissenschaften. Springer, Berlin (2009)

Yano, K.: Some remarks on tensor fields and curvature. Ann. Math. 328–347 (1952)

Zamponi, N.: Entropy Methods for Diffusive PDEs. Lecture notes. (2017)

Zozor, S., Brossier, J.M.: deBruijn identities: From Shannon, Kullback-Leibler and Fisher to generalized $$\phi $$-entropies, $$\phi $$-divergences and $$\phi $$-Fisher informations. AIP Conf. Proc. 1641(1), 522–529 (2015)