Diffusion-driven instabilities and emerging spatial patterns in patchy landscapes

Ecological Complexity - Tập 24 - Trang 69-81 - 2015
Christina A. Cobbold1, Frithjof Lutscher2, Jonathan A. Sherratt3
1School of Mathematics and Statistics, University of Glasgow, University Gardens, Glasgow G12 8QW, United Kingdom
2Department of Mathematics and Statistics, and Department of Biology, University of Ottawa, Ottawa, ON K1N 6N5, Canada
3Department of Mathematics and Maxwell Institute for Mathematical Sciences, Heriot-Watt University, Edinburgh, EH14 4AS, United Kingdom

Tài liệu tham khảo

Bekker, 2009, Landscape metrics indicate differences in patterns and dominant controls of ribbon forests in the Rocky Mountains, USA, Appl. Veg. Sci., 12, 237, 10.1111/j.1654-109X.2009.01021.x Benson, 1993, Analysis of pattern formation in reaction diffusion models with spatially inhomogeneous coefficients, Math. Comput. Modelling, 17, 29, 10.1016/0895-7177(93)90025-T Benson, 1998, Unravelling the Turing bifurcation using spatially varying diffusion, J. Math. Biol., 37, 318, 10.1007/s002850050135 Benson, 1993, Diffusion driven instability in an inhomogeneous domain, Bull. Math. Biol., 55, 365, 10.1007/BF02460888 Bonachela, 2015, Termite mounds can increase the robustness of dryland ecosystems to climatic change, Science, 347, 651, 10.1126/science.1261487 Botsford, 2001, Dependence of sustainability on the configuration of marine reserves and larval dispersal distance, Ecol. Lett., 4, 144, 10.1046/j.1461-0248.2001.00208.x Cantrell, 2012, The implications of model formulation when transitioning from spatial to landscape ecology, Math. Biosci., 9, 27, 10.3934/mbe.2012.9.27 Deblauwe, 2008, The global biogeography of semi-arid periodic vegetation, Global Ecol. Biogeogr., 17, 715, 10.1111/j.1466-8238.2008.00413.x Doedel, 1981, Auto, a program for the automatic bifurcation analysis of autonomous systems, Cong. Numer., 30, 265 Doedel, 2006, Numerical continuation of branch points of equilibria and periodic orbits, 145 Doedel, 1991, Numerical analysis and control of bifurcation problems: (i) Bifurcation in finite dimensions, Int. J. Bifurc. Chaos, 1, 493, 10.1142/S0218127491000397 Eppinga, 2009, Nutrients and hydrology indicate the driving mechanisms of peatland surface patterning, Am. Nat., 173, 803, 10.1086/598487 Ergon, 2001, Life-history traits of voles in a fluctuating population respond to the immediate environment, Nature, 411, 1043, 10.1038/35082553 Fasani, 2011, Factors promoting or inhibiting Turing instability in spatially extended prey–predator systems, Ecol. Model., 222, 3449, 10.1016/j.ecolmodel.2011.07.002 Formosa-Jordan, 2012, Regulation of neuronal differentiation at the neurogenic wavefront, Development, 139, 2321, 10.1242/dev.076406 Garzón-Alvarado, 2012, Numerical tests on pattern formation in 2D heterogeneous mediums: an approach using the Schnakenberg model, Dyna, 79, 56 Gasull, 1997, Limit cycles in the Holling–Tanner model, Publ. Mat., 41, 149, 10.5565/PUBLMAT_41197_09 Gierer, 1972, A theory of biological pattern formation, Kybernetik, 12, 30, 10.1007/BF00289234 Gilbert, 1994 Gouhier, 2010, Ecological processes can synchronise marine population dynamics over continental scales, Proc. Natl. Acad. Sci. U. S. A., 107, 8281, 10.1073/pnas.0914588107 Horsthemke, 2004, Turing instability in inhomogeneous arrays of diffusively coupled reactors, J. Phys. Chem. A, 108, 2225, 10.1021/jp037029k Jones, 2006, Intercroppping sunflower in organic vegetables to augment bird predators of arthropods, Agric. Ecosys. Environ., 117, 171, 10.1016/j.agee.2006.03.026 Leroux, 2013, Mechanistic models for the spatial spread of species under climate change, Ecol. Appl., 23, 815, 10.1890/12-1407.1 Liu, 2013, Phase separation explains a new class of self-organized spatial patterns in ecological systems, Proc. Natl. Acad. Sci. U. S. A., 110, 11905, 10.1073/pnas.1222339110 Lubensky, 2011, A dynamical model of ommatidial crystal formation, Proc. Natl. Acad. Sci. U. S. A., 108, 11145, 10.1073/pnas.1015302108 May, 1974 Meron, 2012, Pattern-formation approach to modelling spatially extended ecosystems, Ecol. Model., 234, 70, 10.1016/j.ecolmodel.2011.05.035 Mukhopadhyay, 2006, Modeling the role of diffusion coefficients on Turing instability in a reaction–diffusion predator–prey system, Bull. Math. Biol., 68, 293, 10.1007/s11538-005-9007-2 Murray, 2001 O’Dea, 2011, Multiscape analysis of pattern formation via intercellular signalling, Math. Biosci., 231, 172, 10.1016/j.mbs.2011.03.003 O’Dea, 2013, The isolation of spatial patterning modes in a mathematical model of juxtacrine cell signalling, Math. Med. Biol., 30, 95, 10.1093/imammb/dqr028 Okubo, 2001 Owen, 1998, Mathematical modelling of juxtacrine cell signalling, Math. Biosci., 153, 125, 10.1016/S0025-5564(98)10034-2 Owen, 2000, Lateral induction by juxtacrine signaling is a new mechanism for pattern formation, Dev. Biol., 217, 54, 10.1006/dbio.1999.9536 Page, 2003, Pattern formation in spatially heterogeneous Turing reaction–diffusion models, Physica D, 181, 80, 10.1016/S0167-2789(03)00068-X Page, 2005, Complex pattern formation in reaction–diffusion systems with spatially varying parameters, Physica D, 202, 95, 10.1016/j.physd.2005.01.022 Perumpanani, 1995, Phase differences in reaction–diffusion–advection systems and applications to morphogenesis, IMA J. Appl. Math., 55, 19, 10.1093/imamat/55.1.19 Petrovskii, 2001, Wave of chaos: new mechanism of pattern formation in spatio-temporal population dynamics, Theor. Popul. Biol., 59, 157, 10.1006/tpbi.2000.1509 Rietkerk, 2002, Self-organisation of vegetation in arid ecosystems, Am. Nat., 160, 524, 10.1086/342078 Rietkerk, 2008, Regular pattern formation in real ecosystems, Trends Ecol. Evol., 23, 169, 10.1016/j.tree.2007.10.013 Rietkerk, 2004, Self-organized patchiness and catastrophic shifts in ecosystems, Science, 305, 1926, 10.1126/science.1101867 Sato, 1993, Modeling of wave regeneration in subalpine Abies forests: population dynamics with spatial structure, Ecology, 74, 1538, 10.2307/1940081 Schmitz, 2010, Spatial dynamics and ecosystem functioning, PLOS Biol., 8, e1000378, 10.1371/journal.pbio.1000378 Segel, 1972, Dissipative structure: an explanation and an ecological example, J. Theor. Biol., 37, 545, 10.1016/0022-5193(72)90090-2 Sheffer, 2013, Emerged or imposed: a theory on the role of physical templates and self-organisation for vegetation patchiness, Ecol. Lett., 127–139, 16 Sherratt, 2013, History-dependent patterns of whole ecosystems, Ecol. Complex., 14, 8, 10.1016/j.ecocom.2012.12.002 Sherratt, 2015, Using wavelength and slope to infer the historical origin of semi-arid vegetation bands, Proc. Natl. Acad. Sci. U. S. A., 112, 4202, 10.1073/pnas.1420171112 Sherratt, 2002, Generation of periodic waves by landscape features in cyclic predator–prey systems, Proc. R. Soc. Lond. B, 269, 327, 10.1098/rspb.2001.1890 Sherratt, 1995, Ecological chaos in the wake of invasion, Proc. Natl. Acad. Sci. U. S. A., 92, 2524, 10.1073/pnas.92.7.2524 Siero, 2015, Striped pattern selection by advective reaction–diffusion systems: resilience of banded vegetation on slopes, Chaos, 25, 036411, 10.1063/1.4914450 Siteur, 2014, Beyond Turing: the response of patterned ecosystems to environmental change, Ecol. Complex., 20, 81, 10.1016/j.ecocom.2014.09.002 Spencer, 1995, A simple predator–prey model of exploited marine fish populations incorporating alternative prey, ICES J. Marine Sci., 53, 615, 10.1006/jmsc.1996.0082 Strohm, 2009, The effect of habitat fragmentation on cyclic population dynamics: a numerical study, Bull. Math. Biol., 71, 1323, 10.1007/s11538-009-9403-0 Turchin, 2001 van der Stelt, 2013, Rise and fall of periodic patterns for a generalized Klausmeier–Gray–Scott model, J. Nonlinear Sci., 23, 39, 10.1007/s00332-012-9139-0 Voroney, 1996, Turing pattern formation in heterogeneous media, Physica D, 99, 303, 10.1016/S0167-2789(96)00132-7 Wang, 2010, Nonlinear dynamic and pattern bifurcations in a model for spatial patterns in young mussel beds, J. R. Soc. Interface, 6, 705, 10.1098/rsif.2008.0439 Wang, 2010, Pattern formation of a predator–prey system with Ivlev-type functional response, Ecol. Model., 221, 131, 10.1016/j.ecolmodel.2009.09.011 Wearing, 2000, Mathematical modelling of juxtacrine patterning, Bull. Math. Biol., 62, 293, 10.1006/bulm.1999.0152 Wearing, 2001, Nonlinear analysis of juxtacrine patterns, SIAM J. Appl. Math., 62, 283, 10.1137/S003613990037220X Webb, 2004, Intra-membrane ligand diffusion and cell shape modulate juxtacrine patterning, J. Theor. Biol., 230, 99, 10.1016/j.jtbi.2004.04.024 Webb, 2004, Oscillations and patterns in spatially discrete models for developmental intercellular signalling, J. Math. Biol., 48, 444, 10.1007/s00285-003-0247-1 Weerman, 2012, Changes in diatom patch-size distribution and degradation in a spatially self-organized intertidal mudflat ecosystem, Ecology, 93, 608, 10.1890/11-0625.1 Wolfrum, 2012, The Turing bifurcation in network systems: collective patterns and single differentiated nodes, Physica D, 241, 1351, 10.1016/j.physd.2012.05.002 Yizhaq, 2014, Effects of heterogeneous soil–water diffusivity on vegetation pattern formation, Water Resour. Res., 50, 5743, 10.1002/2014WR015362 Zelnik, 2015, Gradual regime shifts in fairy circles, Proc. Natl. Acad. Sci. U. S. A., 10.1073/pnas.1504289112