Diffusion-dominated asymptotics of solution to chemotaxis model

Journal of Evolution Equations - Tập 11 - Trang 509-529 - 2011
Andrzej Raczyński1
1Instytut Matematyczny, Uniwersytet Wrocławski, Wrocław, Poland

Tóm tắt

The paper contains results on the asymptotic behavior, as t → +∞, of small solutions to simplified Keller–Segel problem modeling chemotaxis in the whole space $${\mathbb R^2}$$ . We prove that the multiple of the heat kernel is a surprisingly good approximation of solutions.

Tài liệu tham khảo

Biler P.: Existence and nonexistence of solutions for a model of gravitational interaction of particles. III, Colloq. Math. 68, 229–239 (1995) Biler P.: The Cauchy problem and self-similar solution for a nonlinear parabolic equation. Studia Math. 114, 181–205 (1995) Biler P.: Local and global solvability of some parabolic systems modelling chemotaxis. Adv. Math. Sci. Appl. 8, 715–743 (1998) Biler P., Brandolese L.: On the parabolic-elliptic limit of the doubly parabolic Keller–Segel system modelling chemotaxis. Studia Math. 193, 241–261 (2009) P. Biler, L. Corrias, J. Dolbeault, Large mass self-similar solutions of the parabolic-parabolic Keller-Segel model of chemotaxis, 1–32, J. Math. Biol. doi:10.1007/s00285-010-0357-5 . Biler P., Dolbeault J.: Long time behavior of solutions of Nernst-Planck and Debye-Hückel drift-diffusion systems. Ann. Henri Poincar 1(3), 461–472 (2000) Biler P., Karch G., Laurençot P., Nadzieja T.: The \({8\pi}\) -problem for radially symmetric solutions of a chemotaxis model in the plane. Math. Meth. Appl. Sci. 29, 1563–1583 (2006) Blanchet A., Dolbeault J., Perthame B.: Two dimensional Keller–Segel model: optimal critical mass and qualitative properties of solutions. Electron. J. Differential Equations 44, 1–32 (2006) (electronic) Burger M., Di Francesco M., Dolak-Struss Y.: The Keller-Segel model for chemotaxis with prevention of overcrowding: linear vs. nonlinear diffusion. SIAM J. Math. Anal. 38, 1288–1315 (2006) Calvez V., Corrias L.: The parabolic-parabolic Keller-Segel model in \({\mathbb{R} ^2}\). Comm. Math. Sci. 6((2), 417–447 (2008) Diaz J.I., Nagai T., Rakotoson J.-M.: Symmetrization techniques on unbounded domains: application to a chemotaxis system on \({\mathbb {R}^N}\). J. Differential Equations 145, 156–183 (1998) Dolbeault J., Perthame B.: Optimal critical mass in the two dimensional Keller–Segel model in \({\mathbb {R} ^2}\). C. R. Acad. Sci. Paris, Ser. I 339, 611–616 (2004) Duoandikoetxea J., Zuazua E.: Moments, masses de Dirac et decomposition de fonctions. C. R. Acad. Sci. Paris. Math. 315(6), 693–698 (1992) Escobedo M., Zuazua E.: Large time behavior for convection-diffusion equation in \({\mathbb {R} ^n}\). J. Funct. Anal. 100, 119–161 (1991) Herczak A., Olech M.: Existence and asymptotics of solutions of the Debye-Nernst-Planck system in \({\mathbb {R} ^2}\). Banach Center Publ. 86, 129–148 (2009) Jäger W., Luckhaus S.: On explosions of solutions to a system of partial differential equations modelling chemotaxis. Trans. Amer. Math. Soc. 329, 819–824 (1992) Karch G.: Scaling in nonlinear parabolic equations. J. Math. Anal. Appl. 234, 534–558 (1999) G. Karch, K. Suzuki, Blow-up versus global existence of solutions to aggregation equation with diffusion, (2009), 1–16, arXiv:1004.4021. Karch G., Suzuki K.: Spikes and diffusion waves in one-dimensional model of chemotaxis. Nonlinearity 23, 1–24 (2010) arXiv:1008.0020 Kato M.: Sharp asymptotics for a parabolic system of chemotaxis in one space dimension. Diff. Integral. Eq. 22, 35–51 (2009) Kozono H., Sugiyama Y.: Local existence and finite time blow-up of solutions in the 2-D Keller-Segel system. J. Evol. Equ. 8, 353–378 (2008) Lemarié-Rieusset P.G.: Recent Development in the Navier-Stokes Problem. Chapman & Hall/CRC Press, Boca Raton (2002) Mizutani Y., Muramoto N., Yoshida K.: Self-similar radial solutions to a parabolic system modelling chemotaxis via variational method. Hiroshima Math. J. 29, 145–160 (1999) Nagai T.: Blow-up of radially symmetric solutions to a chemotaxis system. Adv. Math. Sci. Appl. 5, 581–601 (1995) Nagai T., Syukuinn R., Umesako M.: Decay properties and asymptotic profiles of bounded solutions to a parabolic system of chemotaxis in \({\mathbb {R} ^n}\). Funk. Ekvacioj 46, 383–407 (2003) Nagai T., Yamada T.: Large time behavior of bounded solutions to a parabolic system of chemotaxis in the whole space. J. Math. Anal. Appl. 336, 704–726 (2007) Raczyński A.: Stability property of the two-dimensional Keller-Segel model. Asymptotic Analysis 61, 35–59 (2009) E. M. Stein, Singular Integrals and Differentiability Properties of Functions, Princeton Mathematical Series 30 , Princeton University Press, Princeton, NJ, 1970. Wolansky G.: On the evolution of self-interacting clusters and applications to semilinear equations with exponential nonlinearity. J. Anal. Math. 59, 251–272 (1992)