Diffuse radiation, twilight, and photochemistry — II
Tóm tắt
A photochemical scheme including a detailed description of multiple seattering up to solar zenith angles of 960 has been used to study a number of different datasets. The good agreement of the model with these datasets and the improvement over previous intercomparisons emphasise the importance of both the diffuse radiation field at wavelengths below 310 nm and multiple scattering at solar zenith angles greater than 90o. These features are ignored in some photochemical models but prove to be very important in modelling photochemistry at dawn and dusk.
Tài liệu tham khảo
Anderson, D. E., 1983, The troposphere to stratosphere radiation field at twilight: A spherical model, Planet. Space Sci. 31 (12), 1,517–1,523.
DeMore, W. B., Molina, M. J., Sander, S. P., Golden, D. M., Hampson, R. F., Kurylo, M. J., Howard, C. J., and Ravishankara, A. R., 1987, Chemical kinetics and photochemical data for use in stratospheric modelling, Evaluation Number 8, NASA JPL Publication 87-41.
DeMore, W. B., Molina, M. J., Sander, S. P., Golden, D. M., Hampson, R. F., Kurylo, M. J., Howard, C. J., and Ravishankara, A. R., 1990, Chemical kinetics and photochemical data for use in stratospheric modelling, Evaluation Number 9, NASA JPL Publication 90-1
Frederick, J. E., 1985, The incident solar spectral irradiance and cross sections of molecular oxygen and ozone for use in the 1985 assessment report.
Gardiner, B. G. and Farman, J. C., 1988, Results of the 1987 ozonesonde programme at Halley Bay, Antarctica, British Antarctic Survey, Natural Environment Research Council, High Cross, Madingley Road, Cambridge CB3 0ET, U.K.
Goody, R. M., 1964, Atmospheric Radiation: Theoretical Basis (1st edn.), Oxford University Press, New York.
Herman, J. R. and Mentall, J. E., 1982, The direct and scattered solar flux within the stratosphere, J. Geophys. Res. 87, 1,319–1,330.
Kondo, Y., Matthews, W. A., Iwata, A., and Takagi, M., 1985, Measurements of nitric oxide from 7 to 32 km and its diurnal variation in the stratosphere, J. Geophys. Res. 90, 3,813–3,819.
Kondo, Y., Matthews, W. A., Aimedieu, P., and robbins, D. E., 1988, Diurnal variation of nitric oxide at 32 km: Measurements and interpretation, J. Geophys. Res. 93, 2,451–2,460.
Kurzcja, R., 1976, Effects of diurnal variations and scattering on ozone in the stratosphere for present day and predicted future chlorine concentrations, J. Atmos. Sci. 34, 1,120–1,129.
Lary, D. J., 1991, Photochemical studies with a three-dimensional model of the atmosphere, PhD Thesis, University of Cambridge, Cambridge, England.
Lary, D. J. and Pyle, J. A., 1991, Diffuse radiation, twilight, and photochemistry—I, J. Atmos. Chem. 13, 373–392 (this issue).
Lefèvre, F. and Cariolle, D., 1991, Total ozone measurements and stratospheric cloud detection during the AASE and the TECHNOPS Arctic balloon campaign, Geophys. Res. Lett. 18, 33–36.
Lubin, D., Frederick, J. E., Rocky Booth, C., Lucas, T., and Neuschuler, D., 1989, Measurements of enhanced spring time ultraviolet at Palmer station, Antarctica, Geophys. Res. Lett. 16, 783–785.
Luther, F. M. and Gelinas, R. J., 1976, Effect of molecular multiple scattering and surface albedo on atmospheric photodissociation rates, J. Geophys. Res. 81, 1,125–1,132.
Meier, R. R., Anderson, D. E., and Nicolet, M., 1982, The radiation field in the troposphere and stratosphere from 240 to 1000 nm: General analysis. Planet. Space Sci. 30, 923–933.
Roscoe, H. K., and Pyle, J. A., 1987, Measurements of solar occultation: the error in a naive retrieval if the constituent concentration changes, J. Atmos. Chem. 5, 323–341.
Russell, J. M. (ed.), 1986, Middle atmosphere program Handbook for MAP 22, SCOSTEP Secretariat, Illinois.
Solomon, S., Russell, J. M., and Gordley, L. L., 1986, Observations of the diurnal variation of nitrogen dioxide in the stratosphere. J. Geophys. Res. 91, 5,455–5,464.